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CHAPTER VI

37. Statement of the Result Proved in Chapter VI

The purpose of this chapter is to prove the following result.

THEOREM 37.1. There are no groups & which satisfy conditions
(i)~(iv) of Theorem 27.1.

Once it is proved, Theorem 87.1 together with Theorem 27.1 will
serve to complete the proof of the main theorem of this paper. In
this chapter there is no reference to anything in Chapters II-V other
than the statement of Theorem 27.1. The following notation is used
throughout this chapter.

® is a fixed group which satisfies conditions (i)—(iv) of Theorem
27.1

Mm=uy=2=1
p—1
U*=CM) and |U*|=u*.
n* =(Up, U= U*. Thus U ={U)
2,=[L, B*] so that L =0* x Q,.

P and Q are fixed elements of P** and Q** respectively.

For any integer » > 0, 2, is the ring of integers mod n. If »
is a prime power then &, is the field of = elements.

U acts as a linear transformation on P. Let m(t) be the minimal
polynomial of U on P. Then m(t) is an irreducible polynomial of
degree ¢ over #,. Let w be a fixed root of m(t) in F#,. Then w
is a primitive uth root of unity in %, and @, @*, -, @ are all
the characteristic roots of U on .

38. The Sets % and <&

LEMMA 38.1. There exists an element Y e Qf such that P* nor-
malizes YR*Y !

Proof. LQ* normalizes U* and Q* is contained in a cyclic sub-
group of N(1*) of order pq. Hence some element of order p in C(Q*)
normalizes 1*. Since C(Q*) = QP* every subgroup of order p in
C(Q*) is of the form Y B*Y for some Y e, Hence it is possible
to choose Ye L, such that Y 'P*Y normalizes I1*, Since [P*, ]S B,
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1012 SOLVABILITY OF GROUPS OF ODD ORDER

P* does not normalize 11*, hence Ye Q! and P* normalizes YU*Y !,

From now on let
(88.1) Z,=YUY?, Z=YUY*=2Z""

where Y satisfies Lemma 38.1. Notice that Q* normalizes {Z,), since
0* normalizes 11* and Y centralizes Q*. Define v, w e 2. by

(38.2) PZP=2;, Q'ZQ =27’

LeEmMMA 38.2. If Z,edZ), ae %, be x, then {Z) =<{Z; "
unless a =0 and b =0,

Proof. Z;'P-°Q*Z,Q'P* = Z;***-'. Hence P°Q® acts trivially on
{ZpKZy "y, However if Z,+# 1 then P*Q*(Z) is a Frobenius
group with Frobenius kernel {(Z,>. Thus <{Z,> = {Z**"-*) as required.

LEMMA 38.8. Ewvery element of PU has a unique representation
wn the form P™OUS, where ac Z, and m,(t) 18 a polynomial of
degree at most ¢ — 1 over £°,.

Proof. There are up®’ ordered pairs (m,(t),a) with a€ 2, and
my(t) of degree at most ¢ — 1 over 2,. Thus it is sufficient to show
the uniqueness of (m,(t), @) in such a representation.

If PmOys = Pi® U, Then reading mod Pyields that ¢ = a'.
Since m(t) is irreducible we get that m,(t) = m{(f) (mod m(t)). Thus
m,(t) = mi(t) as required.

LEmMMA 38.4. Ewvery element of PU — U has a unique representa-
tion in the form U°PYU*, where z,2€ 2, and y€ %,, ¥ # 0.

Proof. If XePN — N and
X =U*P'U* = UnPnU"
then reading mod P we get that * + 2 =, + z,. Hence
Us—nprJ-=+s = Pwn

Since X¢ll, y +0. As (u,» —1) =1 we have that # =,, and so
Y =1, #=2. The representation is unique. There are u’(p — 1)
ordered triples (z, ¥, 2) with z,ze 2, and y€ 2, ¥y #+ 0. Each triple
gives rise to an element of PU — U and [PU — U| =u*(p — 1). The
result now follows.

LEmMmA 38.5. Let %,2,9€ 2, =%, ¥, f,he Z,. Then
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P=U'PU'PU*=1

if and only if
(i) y+f+h=0
(ii) 2w’ + z + gw¥** =0,

Proof. Let R= P*U*P'U’P*U*. Then
R =P gU—"—!U”"” ]
Thus by Lemma 38.3 B =1 if and only if
Yy+h+f=0 =+ 2t7"+ gtv7 = 0(mod m(t)) .
The first equation allows us to rewrite the second as
xt? + z 4 gty = 0 (mod m(t)) .

Thus the lemma is proved.

DEFINITION 88.1. The set & is defined to consist of all ordered
triples (a,, @, a;) such that

(i) a;€2,, ;0 for 2=1,2,3.

(ii) e, +a,+a,=0.

(iliy PU“PU%PU% =1,

DEFINITION 38.2, <7 is the set of all elements a, € 2, such that
(a,, a,, a;) € &7 for suitable a,, a,.

LEmMMA 386. || = ||

Proof. If (a,, a,, a;)e % then by Lemma 88.4 a, and ¢, are de-
termined by a,.

LEmMA 38.7. (@, @, @) € ¥ if and only if

(i) ;€e2, a;,+0 for 1=1,2,38

(ii) e, +a,+a;,=0

(ili) o™ + wmtas — 2 =0,

Proof., By Lemma 38.5,

PUnPUaPU* =1

if and only if a, + @, + a@; =0 and w* — 2 + @w"*% = 0, This implies
the result.

Lemma 38.8. If (a,, a, a)€ ¥, then (—a, —a,, —a,) e 5.
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Proof. If (a,, @, a;) € 57 then by Lemma 38.7 w=% — 2 + @™ = 0.
As a, = —a, — a, this yields that

W2 —-24+ W=,

As —a, — a, —a, = 0 the result follows from Lemma 38.7.

LeMmA 389, For 0 <t =<p—1 let €, be the conjugate class of
PO which contains P* and let R; be the sum of the elements in €;
wm the group ring of PU over the integers. Let

p—1
.Q{ = ZC;R" .
i=0
If ¢ > 38, then ¢, = 2.

Proof. Let g, tt, +-- be all the irreducible characters of PU/T
and let i, %, -+ Dbe all the other irreducible characters of PU. It

is a well known consequence of the orthogonality relations ([4] p. 316)
that

= up' [ (2 PY (P X:{(P)Y(P?)
“= o p1) ¥ x:(1) }

Since U is eyeclic, ¢t:(P) = p(P?) = (1) =1 for all 2. By 3.16 1;(1)=u
for all 5, Thus

=% 1 5 o (PYY AP
(33.3) o= tcfu+ o+ BT}

By the orthogonality relations
SILPIFSICP) s for 1Sisp—1.
Therefore
(38.4) |3 XPYLA(PY)| < (max | x:(P) ) 2 (2P [ = 9%
By (38.3) and (38.4)
| p'e, — w'| < PP
Thus
(38.5) Pl = w — pt*,

-1

Since u = 2 T > 7' (38.5) vields that

¢y = o Pt > Pt — pult = puypUt 1)
=
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As ¢ > 3 and ¢ is a prime we have ¢ = 5, and the lemma follows.
Lemma 3810, | ¥ |=]|<#]|>0.

Proof. Assume first that ¢ = 3. Consider the set of polynomials
of the form f,(t) = + at’ + (¢ + 6)t — 1 with a€ 2,. There are p
of these and none of them has 0 as a root. Thus if f,(f) were re-
ducible for every value of a there would exist @ + b such that f,(f)
and f;(t) have a common root c€.%#,. Then

ac’ + (@ + 6)c = be* + (b + 6)c .

Since ¢ # 0 this yields that a(c + 1) = b(c + 1), hence ¢ = —1. How-
ever f,(—1) = —8 # 0. Thus there exists some polynomial f,(f) which
is irreducible over &#,. Let a be a root of f.(t) in .%,:. Then

@t = —f0) =1, (1+ @)= _f(-1)=8,

Therefore a = @™ for some a,€ 25, a,#0, and 1+ a =2w" for some
a, € 2,,a,+ 0, Furthermore —w%+ 2w =1, Thus w* + @+ —2=0,
Since w2 # 1, a, + a, # 0. Hence by Lemmas 38.6 and 88.7 | &% | =
|| > 0.

Assume now that ¢ > 8. Then Lemma 88.9 implies the existence
of a,be 2, with a # 0 or b # 0 such that

U-PUU*PU? = P?,
Therefore
(38.6) PUPPUPU =1,

Jet a,=0b,a,=—a, agz=a&¢ —b. Then a,+a,+a,=0. If b=0
then (38.6) becomes P'U°PU*® = 1; as PU is a Frobenius group this
implies @ = 0 contrary to the choice of @ and b. If @ = 0 then (38.6)
implies that PU*P'U* =0, hence b =0. If a — b =0 then (88.6)
yields that PU*P*U—°P =1 or U® commutes with P?, Thus a =0,
hence also b = 0. Therefore a,, a,, @, are all non zero and by Definition
88.1 and Lemma 38.6 | & | =|<Z| > 0.

The following result about finite fields is of importance for the
proof of Theorem 37.1.

LEMMA 38.11. For x€ %, define N(x) = 2't** "+ and for

x+ 2 let °= 2;9; If a e Fp — F,, then for some i, N(a*') - 1.

Proof. Assume that the result is false and N(a”') =1 for all i.
‘We will first prove by induction that
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—i—1Da+1
—ta+(+1)

If 1 =1 (38.7) follows from the definition of 6. Assume now that
(38.7) holds for 2 =k — 1, Then

1
—(k—2ax+k—1
2"{ (—(k—)1)a+1c }
—(k—Da+k
—2(k — 1) + 2k + (k — 2)a — (k — 1)
—(k—Da+k
—ka+(k+1)

This establishes (38.7).
Now (88.7) implies that for j = 1,

(38.7) a = for1=1,2, ...

a™ =

i f“—(’i—l)a+'i} 1
o= 22 S S—
= Mi{-ia+G+n ~J*+0+D
Therefore
N(—je+i+1)=—"— =1,
EN(a“")
Thus
(38.8) N(—aa+a+1) =1 for ac. #,.
Define f(t) by
(38.9) ) =(t—a)t —a®) e (t — ™).

Thus f(t) has coefficients in %, and (38.8) yields that

(38.10) a«f(_“_;f_l_) = a«N(“_:_l - a) =N@+1l—ax)=1

for ae #,, a#0.

Let b =% : 1 for @ + 0, then ¢ = 7_1_1_ . Hence (38.10) yields that

1 _
o ®=1 forbes b1,

Therefore

(38.11) SO)—(b—-1)Y=0 for be #,, b#1.
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J@® — (@t —1) is a polynomial of degree at most ¢. By (88.11)
F@) — (@ —1)Y has at least (»p — 1) roots. As (p — 1) > ¢ we must
have that f(t) = (¢ — 1)*. By (38.9) « is a root of f(t), hence a =1
contrary to the choice of @. The proof is complete.

39, The Proof of Theorem 37.1

LEMMA 89.1. There exist functions f, g, and h such that

(i) fand h map 2, X 2, X 2, into 2,

(ii) g maps 2, X 2, X 2, into 2,

(iii) P*UYPrUI=voposynrevn =1
Furthermore for x + 0, y + 0, z+ 0 (iii) determines f(x, y, 2), 9(=, ¥, ?)
and h(x,y, 2) uniquely and f(z, vy, 2), 9(z, ¥, 2), h(z, ¥, 2) are all non-
zero.

Proof. By Lemma 38.4 the functions exist and are uniquely de-
fined by

PUPUIPUP =1

provided that P*UYP* does not lie in U, It is easily seen that if
z+0, y+ 0 and z+ 0, P*UYP* does not lie in 1.

Suppose that f(x,y,2) =0. Then P*UvP**? = U-*ell, Then
y=—h and U'P***U~¥ = P*c P*. Therefore either y =0or x = 0.

Suppose that g(x,y,2) =0. Then P*U*P*= U-’-*, Thus y =
—f-—h and UP*U"v= P> Hence x=0o0r y=0.

Suppose that h(x,y,2) =0. Then UYP*U’P*** =1, Hence
y+f=0, then U'P*U"¥=P* Thus y=0o0r z=0. This com-
pletes the proof of the lemma.,

Throughout the rest of this section f, g, & will denote the func-
tions defined in Lemma 39.1. For e 2°,, Y as in Lemma 38.1, define

Y,=YP*YP",

LemMaA 39.2,

(i) Y,= Y 'P*YP*= P*YP'Y!

(ii) YP'Y'= Y:!P*

(iii)) YP'Y*= P'Y,,
Sfor x,2,0€ %,

Proof. Since Pe P*= N(Q,) and O, is abelian, (i) is immediate.
(iii) is a direct consequence of (i). By definition Y_, = Y 'P*YP—,
Thus Y} = P*Y'P—*Y = YP*Y'P-* which implies (ii).

LemMA 89.8. For ze 2, P*UP*= Y 'U"Y..
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Proof. By (38.2) P*ZP—* =Z"", By (38.1) Z= YUY™. Hence
Y 'P*YUY'P*Y=U"".
Conjugating both sides by P°, we get that
YUY, = P*U"" P+,
If both sides are raised to the v*th power, the lemma follows.
LEMMA 39.4.
Y ZVY:} = P*Z - Mevn Yo PRV RZ S0 pos

Proof. Substitute (38.1) into (iii) of Lemma 39.1 to get
P*Y'ZYYP*'Y'Z'YP°'Y'Z'Y = 1.
Conjugate by Y-'P* to get
(P=YP*Y )Z(YP'Y )Z(YP'Y )Z'P*=1.
Now use the results of Lemma 39.2 to derive that
Y. ZVYZP*Z'P°'Y , Z'"P* =1
which implies the lemma.
LemmA 89.5. If (a,, a., a;) e 7, then
Y, 22 Y Y, 25 Y = Y 2 Y

Proof. In the definition of & conjugate (iii) by P*. Then
PyapU=PU»P* =1,
or
(P*UP)YP2USPY) = P*U %P,
Hence Lemma 89.3 yields that
(YUY )Y U'Y,) = YUY, .
Since Q is abelian, this implies that
YUY Y, U'Y;' = Y, U 'Y;".

Conjugating by Y ' implies the result by (88.1) and the fact that Q
is abelian.

LEMMA 389.6. For (a, a,, a;)e & define
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9. = 9@, a, —3)
9, = 9(1, —az»*, —3)
g: = 9(1, ap’, —2)
k, = h(2, av, —8) — h(1, —a*, —3)v™*
k, = —f(2, a,v, —8) — h(1, a,v*, —2)v?
k= —r(Q1, a2, —2)v* + f(1, —av*, —8)
k=—-—g,—1.
Then

(39.1) Y, ZMPY; = P-1Z"P Y PZ*P

Proof. Use Lemmas 39.4 and 39.5 to obtain

P37 -h.a10,—9) Y,'(',l - P-o@.60.-8) 7~ (.a0.~8) P38
Pz —htt.aph Yﬂ?ll uzus,-—l)P —0(1.879%,~2) 777 (1.ay0%.—2) 3
= V2wV V2o Y = V2T,

— P—lZ—h(l.—aac’,—a) ,711_%”,,_3) P—g(l.—u,o’.—s) Z—yu,—aau?,—s) P,
Multiply on the left by Y,u.4,0-5Z****~P* and on the right by
P Z!(l.—asv’.-—a) Pq(l,—a,oﬂ,—s)
to get
AY; agt,—0 B = Ya(!.alv.—S)C o0t —agot,~5)

where

A = P98 Z-y(:,alu.—w—m.a,os,—a)u-’ P2

B = P—a(l.a,v’.—:)—l Z-,ru.a,v'.—:)a—-luu.—a,vﬂ.—s) Pot~azi—9)

C = Zh(a,alu.—a)—-h(1.—a3v5.-a)o"1 P R
or equivalently

A= PnzZmp' B= P‘Z%»pPs, (C=Z4P,
The lemma follows.

LeEMMA 39.7. Let (a, a,, a;)€ . Use the notation of Lemma
39.6. If k, +# 0, then there exist elements ¢, ¢c;€ 2, such that

(i) &=+0

(ii) k,+ kv =k,

(ili)y Y PYP—% = P oY 'P-%Y,.

Proof. Conjugate (89.1) by Q. Since P*Q = C(Q), this yields
that
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Y, Z*PY,; = P~ Z*P'Y,P*Z"P% ,
Taking inverses we get
Y, PZhY,t = P~ kP-+Y, P Z kP,

Multiplying this by (39.1) on the left yields

YGIZ (1—w)k; Y,II — P—nZk,P! Yg—;lPkZ (l—w)k3P—k anP_’Z_wk2P,1 .
Conjugating by P~ yields

Pn lezu—w)kl Y,?P—" = Zkp? Y,;IP"Z (1-w)ky P—Fk Y%P—Qz—wk, .
Use Lemma 39.2 (iii) and (38.1) to get

YPaY YUty 1YPuY !
=YURY'P'Y, ' P*YU* Y 'P*Y, P YUY,

Conjugate this by Y to obtain »

payt-wmp-o = kY PY P*YUS Y P*Y, PYU ¢,
Multiply on the left by U-* and on the right by U** to obtain

U-tpao-vap-nh = WU W1,
(39.2)
W, = Y'P'Y,'P*Y .
Suppose that U*®* =1, Then (89.2) implies that
Paga-wkhp-o = [Ja-wk

By Hypothesis k, #+ 0, hence by Lemma 38.2, U*** 1, By Lemma
39.1 g, # 0. Thus the above equality cannot hold in the Frobenius
group PU. Hence U*"'* =1, This proves statement (i) of the
lemma..

Let U, = W, U W, By (39.2) U, is a conjugate of U*s*—*
which lies in PU. All conjugates of U*"* which lie in U1 are of
the form

Uk,u—w)u"swc' ,
with ¢;€ 2, ¢’€ 2,. Hence
(39.3) U = WU W = W? [ ksi—wre®iue’ W,

for some W,eP. Thus W,W,e N(1). Since Qe N(Il), we get that
Q- W, WQe NW). By (39.2) W,Q = QW,, thus Q'W, W,Q = Q' WLQW.
Hence

WQW 'R = W,W, QW' W 'Q)e N() .
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However W.Q'W,'Q e P. Since PN NW) =1, this yields that
Qe C(W,). Hence W,eBNCQ) = P*. Thus

(39.4) W, = P>
for some ¢, € 2,. Now (39.2) and (89.4) show that
W, W, e QPB* N NU) .

Since Pe N(KZ)), we have Y-'PY e N(I), thus QP*NNQU) =
{Y-'PY). Therefore

(39.5) W, W, = Y 'P»Y
for some ¢, € ;. Consequently

(W W)U e I, = oo
If this is compared with (39.3) we see that

(39.6) G+e=0 ¢=0.
Using (39.4) and (39.6) in (39.5) leads to
(39.7) W, = PaY'P-aY,

Comparing (39.2) and (89.7), we get
P-aY-'P-%Y = Y'P*Y,'P*Y .
Conjugating by Y gives
(39.8) YP-aY'P~% = P*Y'P*,
If we substitute (39.7) into (39.2) we get
U-PaUo-wup-nluw = P-altt-"pa

Multiply on the left by U—**“P% and on the right by U-nepPalUhuw
to get

U—k,o"-"Pc, U-tapulka — U—wk3u°3Pe, U-twpalfhe

Since the right hand side is the left hand side conjugated by @, we
see that @ centralizes the left hand side. Hence

(39.9) U-t“pal--pPal4 = Pu
for some ¢, € 2. Reading (39.9) mod P yields that
k, =k, + kv
which proves (ii) of the lemma. Substituting (ii) of Lemma 89.2
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into (39.8) we get that
(39.10) PY, P = Y )P,
Substituting (89.10) into (89.1) leads to

Y, ZBPY,!' = P Z"Y'P~oraZ"P%

Multiply on the left by P and on the right by P-%. Then using
Lemma 389.2 (ii) and (iii) this becomes

YPnY ' ZMWPYP-2Y ' = ZhY P~ sk
Use Z= YUY to get
YPaURY'PYP-2Y ' = YURY Y ' P~ v sYURY™,
Conjugate by Y and multiply on the left by U—* to get
(39.11) UnPaUsY'PYP = Y'Y 'PsYU?
Conjugate by @ and take inverses, then
pPuY'PRYUwp-ahw = U Y 'PataY, Y
Multiply by (89.11) on the right to get
Py,Y—lP—-l YU—kle—lek’(w—l)PplUkl Y—lPYP—ﬂ, — U"S(l"“) .
Conjugate by W to get

W PuY PYU - wp-ahtwe-tpaghy-'PYP- W
= W,Ub-» W,

Using (39.2) and (39.3), this yields

W PaYPY{U - wp-akw-bpayh}lYPYP-: W
(39.12) —_ l]o — U—k’P“U(l_th—hUw" .
Now by the second equation in (89.12)

U—kle—al Uk,wU—k,Pal Ukl — U—kle-—yl Ul:,w UOU—kngql Ulqw .
Thus the first equation in (89.12) implies that

U-twpaheY-'PYP- "W e C(U,) .

By (39.3) and (89.4), C(U,) = P~%U*P". Hence
(89.13) Ut paJawy-1PYP-W,? = P~2U,P%

for some U,e*. We wish to show that U,el. To do this con-
jugate (39.18) by @ to get
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(39.14) U+ P’ Y PYP- W = P~ Po

by (39.7). Multiply (39.13) by the inverse of (39.14) on the right to
get

(39.15) U-tvwpnhwe J-kwP-aJkaw? = P-alji-vpPa

By Lemma 388.2 U, and U} have the same order. Since the left
hand side of (89.15) is in PU, this implies that the order of U, divides
u, thus U,ell,

Multiply (39.13) on the left by U;7P° and on the right by
W, P2 Y'P'Y to get

(39.16) UtPaU-*epayUhw = PaW,P2Y'P'Y .,

By (39.7) the right hand side is in C(Q), while the left hand side is
in PU. Since C(Q) N PU = P*, this yields that

(39.17) UtPaU-tepayhe = P’
for some ¢” € 2,. Conjugate by @' to get
U ' PaU-Pals = P,
Comparing this with (89.9) yields that
Ur P = Uw"Pa,
so that
Ut = U, ¢,=c".
Using (89.16) and (89.17) this yields
Pt = PaW,PuY'P'Y
or
Poa-aY'PYP2=W,.
Hence by (39.7)
Po-aY'PYP~9% = P~ Y 'P~%Y,

This immediately implies (iii) of the lemma and thus completes the
proof.

LemMMA 39.8. Let (a,, a,, a;) € 7, and let k, have the same meaning
as in Lemma 89.6. Then k, = 0.

Proof. Suppose that k, # 0, so that Lemma 39.7 may be applied.
Let
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hq = h(2, al’l), _'3)
h, = h(1, a,;0*, —2)
hy = (1, —azv*, —3) .

By Lemma 38.5 (i)
f@,av, —8)= —aw—h

f(lr q,,'vs, '_2) = __a’,vs - h:
JQ, —av*, —8) = a,v* — h, .

Hence in the notation of Lemma 39.6
kl = hl - h,’l)_l
k’ - a{l) + h1 - h”v—.,
ks = av* + hv' + a,v* — by .
Since a, + a, + a; = 0, this yields that
k= —a v+ hv™ — by
k,— k= —av+ hv?®— b,
Thus
(ke — kv =k,
or
ky+ kovi=k.

By Lemma 389.7 (ii) this implies that k(v — v ) =0. If ¢, # —1,
then by Lemma 38.2, (v** — v~*) has an inverse in 2,. Thus &k, =0

contrary to Lemma 39.7 (i). Therefore ¢, = —1. Now Lemma 39.7
(iii) becomes
(89.18) Y-'PYP-% = P-«Y-'PY .,

Reading (39.18) mod L implies that g, =¢,. Thus (89.18) yields that
Y-'PY and P-% commute. Since g, # 0 by Lemma 89.1, this implies

that
PY'PYeQ,NC(P)={1}.

Thus Ye, N C(P) = {1} which is not the case. Therefore k, = 0 as
required.

LemMMA 39.9 Let (a,a, a,)e ¥, let k, and k, have the same
meaning as in Lemma 39.6. Then k, =k, = 0.

Proof. Since k, = 0 by Lemma 39.8, (89.1) becomes
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139.19) Y, PY;' = P Z"P'Y 'P*Z*%P%
‘Conjugating by @ and using (38.2) we get that
{(39.20) Y, PY;! = P~Z*MP*Y,'P*Z*%P%
Now (39.19) and (89.20) imply that

ZMP Y P ZYs = Z¥P Y, P Z "% |
‘Therefore
(39.21) PY\P*ZM - P*Y, P~ = Zkw |

Suppose that %k; # 0. Then by Lemma 38.2 k(1 — w) # 0. As
<Z» is a T.I. set in @, (39.21) now implies that P*Y,'P*e N(KZ)).
As Pe N({Z)) this implies that

Y-P-#YPh = Y, e NKZY) N DO =<1 .

‘Therefore P% commutes with Y, Hence g, = 0. This is contrary to
Lemma 39.1. Thus %, = 0.

Now (89.21) implies that k (w — 1) =0. Therefore by Lemma
38.2 k,=0.

LEMMA 39.10. Let (a,, a,,a,) € ¥ and g, have the same meaning
as in Lemma 39.6. Then g, = 1,

Proof. In view of Lemmas 39.8 and 39.9 equation (39.1) becomes
{(39.22) Y, PY,'= P-P*Y 'P*P%
Reading (39.22)Jmod L, implies that

l=—0,+2+k+g,

.or using the definition of &
(39.23) -1-g=k=-14+9,—9,.
Hence g, = g, — ¢, and (89.22) becomes
(39.24) Y, PY;' = P*aY,l, Pot,

P acts as a linear transformation on L, It is convenient to use
the exponential notation., Thus Y? = P'YP, so that Y, = Y +F°,
(89.24) can be rewritten as

PY,PY;' = P-ovY, Pot

In exponential notation this becomes
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(39.25) Y(_1+P71)P+ (1 P93 — Y(l_Pﬂl—ﬂl)yﬂ—l
Define

(39.26) A=(—-14+ PP+ (1 — P — (1 — Prro)pn-
=(1-—P)+ P (P*—1)— P (P—1).
Since P*L, is a Frobenius group with Frobenius kernel £, 1 — P is

an invertible linear transformation on {,. By (89.25) A annihilates
Y. Hence also A(1 — P)! annihilates Y. By (89.26)

Al — P)* =1— PuY(P + 1) + Pot
=1—Pn41—Put_] 4 Pt

Therefore
Y, 1 Y;'11Y,,'" = Y(—1+pﬂ,—1)—(—1+P'1-‘)_(_1+p01) =1
tae il .
Thus
(39.27) Y=Y, Y, .

By Lemma 39.3
Y,,',l . Ut Y”’_1 = P~ [Jpos-1
By (89.27) this yields that
(39.28) Y;LY U, Y, , = P-eragpery
Lemma 89.2 also implies that
Y U vl Y, = P"UP" .
Raising this to the »%—%~'th power we get that

(39.29) YUY, = Py TP
Now (39.28) and (39.29) yield that
(39.30) LP-aUST T pay, | = P-eriUper |

Another application of Lemma 39.3 gives
(39.31) Y LUTY, , = PO PO |
Thus (89.80) and (39.81) imply that

YL [P Py, U Y,

(39.32) =[P~wr0 Ptes-b, p--n JPio-1]

Since g, # 0, P U ""'Pug1l, Therefore
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[P..,1 U.,'!—.l—IP'I, U‘,Ul—l] c q;‘ .
As P is a T.I. set in & (39.32) now implies that
Y, e NN =1.

Therefore P commutes with Y and so g, = 1. Now (89.27) yields
that Y, , =Y, or

Y- P-@rd YPurh = Y-PYP,

Consequently P-92YP!-% = Y, Hence g, = 2. Now (89.23) implies
that g, = 1 as required.

LemmA 89.11. Let <# have the same meaning as in Definition
38.2. If ac Z then —a€c &.

Proof. Let a =a,6 &# and suppose that (a,a, a,)e. . By
Lemma 388.8(—a,, —a,, —a;)€ . Let (—a, —a, —a,) play the role
of (a,, a,, @;). By Lemma 89.10 g, = g(1, —a,v®, —2) =1, Thus Lemmas
88.5 and 39.1 imply that

(89.33) —a,v* + f(1, —av?, — 2) + k1, —a?, —2) =0
(39.34) 0 — 2 4 warttht-art-n —

Let b, = —a,»*, b, =f(1, —a,?’, —2) and b, =h(l, —a?®, —2). By
Lemma 89.1 b, #0 for 1 =1,2,3. By (89.33) b, + b, + b, = 0. Now
it follows from (89.34) and Lemma 388.7 that (b, 0b,, b;)e o. Thus
—av®* = —a, 0 = b, e FZ.

Since @ was an arbitrary element of <# we get that for any
integer n, a(—7*)*€ <. Thus in particular, a(—1°?ec <#. Hence
by (88.2), —a = —av*?€ <# as was to be shown.

It is now very easy to complete the proof of Theorem 37.1.
Define the set & by

& = {w*|ac F}.

Since | &# | = | ¥ |, Lemma 388.10 yields that & is not empty. The
definition of <# and Lemma 38.7 yield that 1¢ % and aeZ if
and only if 2 —ae%. Lemma 89.11 implies that @€ & if and only

if a=*e &. Therefore if o efgthenz1 €#. Sinceu=14+p+---

+ p, we have N(a) = at+?++#"' =1 for ae &. Thus if ¢ has the
same meaning as in Lemma 38.11 then there exists ae F — F,
such that N(a”) =1 for all values of <. This contradicts Lemma
38.11, and completes the proof of the main theorem of this paper.
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