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Kakutani [1] and Markov [2] have shown that if a commutative
family of continuous linear transformations of a linear topological space
into itself leaves some nonempty compact convex subset invariant,
then the family has a common fixed point in this invariant subset.
The question naturally arises as to whether this is true if one considers
a commutative family of continuous (not necessarily linear) transfor-
mations. We shall show that it is true in a rather special, but non-trivial,
case, thus giving some hope that further investigation of the general
question will yield positive results. The main result of this paper is
the following.

THEOREM. Let B be a Banach space and let X be a nonempty
compact convex subset of B. If ^ is a nonempty commutative family
of contraction mappings of X into itself, then the family ^ has a
common fixed point in X.

Note 1. A mapping /: X—> X is said to be a contraction mapping
if \\f(x)-f{y)\\^\\x-y\\ for all x,yeX.

Note 2. If the norm for B is strictly convex, then the above
theorem is almost trivial since in this case each contraction mapping
has a fixed-point set which is nonempty, compact, and convex. In the
general case, however, the fixed-point set of a contraction mapping
is not convex. An example illustrating this fact is constructed as
follows. Let B be the space of all ordered pairs (α, 6) of real numbers,
where if x = (α, 6), then | | # | | = max{|α|, |6|}. Define X = {x: \\x\\ ^ 1}
and / : I - ^ I a s follows: if x = (a, b), then/(a?) = (|δ|, 6). It is easily
shown that / is a contraction mapping and that x = (1,1) and y =
(1, —1) are fixed points for /. However, 1/2 (a? + y) = (1, 0) is not a
fixed point for /.

In the proof of the theorem we shall make use of the following
two lemmas.

LEMMA 1. Let B be a Banach space and let M be a nonempty
compact subset of B and let K be the closed convex hull of M. Let
p be the diameter of M. Ifρ> 0, then there exists an element ueK
such that
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]# — u\\: xeM} < p

Proof. Since M is nonempty and compact, we may find x0, xx e M
such that ||xQ — xx\\ — p. Let Mo c M be maximal so that MQ ZD {X0, XX}
and | |$ — y\\ = 0 or p for all x, yeM0. Since Λf is compact and we
are assuming p>0, Mo must be finite. Let us assume M0—{x0, xu , xn}.
Now let us define

k=o n + 1

Since M is compact, we can find yoeM such that ||2/0 — u\\ —
sup{||# — u\\: xeM}. Now

\\Vo - n\\ ̂  ± - ^ — \ \ y 0 - xk\\ ̂  p
k=o n + 1

because ||y0 — α?fc|| ^ /ofor all k = o, 1, •••,?&. Therefore, if ||y0 — w|| —
/9, then we must have \\y0 — xk\\ = /? > 0 for all fc = 0,1, , n, which
means that yQ e Mo by definition of Mo. But then we must have y0 =
xk for some fc = 0,1, •••, w, which is a contradiction. Therefore,

LEMMA 2. Lei Xo be a nonempty convex subset of a Banach space
and let f be a contraction mapping of Xo into itself. If there is a
compact set MczX0 such that M— {f(x):xeM} and M has at least
two points, then there exists a nonempty closed convex set Kx such that
f(x) e JEi Π XQ for all x e Kx Π Xo and M Π K[ Φ Φ. (Kί is the complement
of Kx.)

Proof, If we take K as the closed convex hull of M, then by
Lemma 1 there exists an element ueK such that

ft = sup{||a? - u\\:xeM} < p ,

where p is the diameter of M. Sinee M has at least two points, we
have p > 0, so that our use of Lemma 1 is valid.

For each xeM let us define U(x) = {y: \\y — x\\ g ρx). Since
u € U(x) for each x € M, we have Kx — [\xeπ U{x) Φ φ. It is clear that
Kx is closed and convex. For any x e Kx n Xo and any z e M we have
x e U(z), i.e., \\x — z\\ ̂  ft. Since M = {/(i/): 2/e M}, there must exist
^/€ Msuch that z —f(y). Since / is a contraction mapping, we have

11/0*0 - z\\ - Il/W ^ / ( ί / ) | | ^ ||fl? - y | | ^ ft

i.e., /(#) e U(z). Since this is true for any z e M, we have /(#) e -EΓi Π XQ.
We have shown that f(x) e ζ ί l l o for all x e Kλ Π XG.
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Since M is compact, there exist x0, x±eM such that ||cc0 — #i| | =
p > pλ. Thus, we see that xλ does not belong to U(x0) Z) Kl9 i.e.,

I Φ φ.

Proof of the theorem. One may show by using Zorn's lemma that
there exists a minimal nonempty compact convex set I o c l such that
Xo is invariant under each f e ^ . If Xo consists of a single point,
then the theorem is proved. We shall now show that if Xo consists
of more than one point, then we obtain a contradiction.

We may use Zorn's lemma again to show that there exists a
minimal nonempty compact (but not necessarily convex) set MczX0

such that M is invariant under each fe^~. We will now show that
M — {f(x): x e M} for e a c h / e ^ . Since each f e ^ is continuous
and M is compact, f(M) must also be compact. For a l l / e ^ ~ we
have f(M) c M. Let us assume that for some g e ^ we have g(M) =
N Φ M. Now for any x e N there exists y e M such that x = g(y).
Since all functions in j^~ commute, we have for all / e j ^ f(x) —
f(g(y)) = g(f(y)) e N because f(y) e M. Thus, we have f(N) czNczM
for all / e ^ But since N is a nonempty compact subset of Xo which
is invariant under each fe J^ and since NczM and N Φ M, we have
contradicted the minimality of M. Consequently, our assumption that
M φ N is false. We may assume that M has at least two points;
otherwise, the theorem is proved.

We may now apply Lemma 2 to each / e ^ Γ Referring to the
notation of Lemma 2, we see that the set Kx Π Xo is invariant under
each fejK Since Kλ is closed, we see that Kλ Π Xo is a nonempty
compact convex subset of Xo. Since X0Γ\ KIZDMΠ Kl Φ φ, we see
that Kx Π Xo Φ Xo> Thus, we see that if Xo has more than one point,
then we obtain a contradiction to the minimality of Xo.
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