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Kakutani [1] and Markov [2] have shown that if a commutative
family of continuous linear transformations of a linear topological space
into itself leaves some nonempty compact convex subset invariant,
then the family has a common fixed point in this invariant subset.
The question naturally arises as to whether this is true if one considers
a commutative family of continuous (not necessarily linear) transfor-
mations. We shall show that it is true in a rather special, but non-trivial,
case, thus giving some hope that further investigation of the general
question will yield positive results. The -main result of this paper is
the following.

THEOREM. Let B be a Banach space and let X be a monempty
compact convex subset of B. If S 1is a nonempty commutative family

of contraction mappings of X into itself, then the family F has a
common fixed point in X.

Note 1. A mapping jf: X — X is said to be a contraction mapping
if [[f(@) — S| =z —yl| for all », ye X.

Note 2. If the norm for B is strictly convex, then the above
theorem is almost trivial since in this case each contraction mapping
has a fixed-point set which is nonempty, compact, and convex. In the
general case, however, the fixed-point set of a contraction mapping
is not convex. An example illustrating this fact is constructed as
follows. Let B be the space of all ordered pairs (e, b) of real numbers,
where if ¥ = (a, b), then ||z|| = max {|a|, |b]}. Define X = {x: ||| < 1}
and f: X — X as follows: if x = (e, b), then f(x) = ([b], b). It is easily
shown that f is a contraction mapping and that « = (1,1) and y =
(1, —1) are fixed points for f. However, 1/2(x + y) = (1, 0) is not a
fixed point for f.

In the proof of the theorem we shall make use of the following
two lemmas.

LEMMA 1. Let B be a Banach space and let M be a nonempty
compact subset of B and let K be the closed convex hull of M. Let

o be the diameter of M. If o > 0, then there exists an element uc K
such that ‘
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sup{l|jz —u|l:zecM}<p.

Proof. Since M is nonempty and compact, we may find x,, x,€ M
such that ||z, — || = p. Let M,C M be maximal so that M, D {x,, 2.}
and ||z — y|| =0 or p for all #,ye M,. Since M is compact and we
are assuming p>0, M, must be finite. Let us assume M,={x,, x,, + -+, ©,}.
Now let us define

_w 1
u_kzﬂn_*_lxkeK.

Since M is compact, we can find y,€ M such that ||y, — ul|l=
sup {/l® — u||: x€ M}. Now

" 1
— << — <
1 —ull= 5 ==l —ali=p
because ||y, — 2, || < pforall k = ¢, 1, - -+, . Therefore, if ||y, — u|| =

0, then we must have ||y, — 2,||=0>0forallk =0,1, ---, », which
means that y, € M, by definition of M,. But then we must have y, =
z, for some k=0,1,---,n, which is a contradiction. Therefore,

Ny — ull < p.

LeMMA 2. Let X, be a nonempty convex subset of a Banach space
and let f be a contraction mapping of X, into itself. If there is a
compact set Mc X, such that M = {f(x): e M} and M has at least
two points, then there exists a nonempty closed convex set K, such that
f@eK NX, forallze K,N X,and M N K + ¢. (K| is the complement

of K,.)

Proof. If we take K as the closed convex hull of M, then by
Lemma 1 there exists an element % € K such that

o, =sup{llz —ul:zeM}<p,

where p is the diameter of M. Since M has at least two points, we
have p > 0, so that our use of Lemma 1 is valid.

For each ze M let us define U(x) ={y:|ly — z]| = p,}. Since
u € U(x) for each.x e M, we have K, = (N,ex U®) # ¢. It is clear that
K, is closed and convex. For any ze€ K, N X, and any ze€ M we have
ze U), ie., ||# —z|| < p,. Since M = {f(y): y € M}, there must exist
y € M such that z = f(y). Since f is a contraction mapping, we have

| f @) — 2]l = [[f@) —fW =l —yll = 0

i.e., f(x) € U(z). Since this is true for any z € M, we have f(x) € K,N X,.
We have shown that f(x)e K, N X, for all xe K, N X,.
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Since M is compact, there exist x,, x,€ M such that ||z, — || =
© > p,. Thus, we see that x, does not belong to U(z,) D> K, i.e.,
xneMn K| # ¢.

Proof of the theorem. One may show by using Zorn’s lemma that
there exists a minimal nonempty compact convex set X, C X such that
X, is invariant under each fe & . If X, consists of a single point,
then the theorem is proved. We shall now show that if X, consists
of more than one point, then we obtain a contradiction.

We may use Zorn’s lemma again to show that there exists a
minimal nonempty compact (but not necessarily convex) set M X,
such that M is invariant under each fe &# . We will now show that
M = {f(x): x€ M} for each fe & . Since each fe.&# is continuous
and M is compact, f(M) must also be compact. For all fe & we
have f(M) < M. Let us assume that for some ge &%  we have g(M) =
N+ M. Now for any e N there exists y€ M such that z = g(y).
Since all functions in &% commute, we have for all fe & f(z) =
fla) = g(fW)) € N because f(y)e M. Thus, we have (NN CNcC M
for all fe . & But since N is a nonempty compact subset of X, which
is invariant under each fe & and since NC M and N # M, we have
contradicted the minimality of M. Consequently, our assumption that
M +# N is false. We may assume that M has at least two points;
otherwise, the theorem is proved.

We may now apply Lemma 2 to each fe # Referring to the
notation of Lemma 2, we see that the set K, N X, is invariant under
each fe & Since K, is closed, we see that K, N X, is a nonempty
compact convex subset of X,. Since X,N K/ DMnN K/ + ¢, we see
that K, N X, #+ X,. Thus, we see that if X, has more than one point,
then we obtain a contradiction to the minimality of X,.
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