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1. Introduction. Let f(x) be defined on [0,1]. The following
two theorems on the Bernstein polynomials corresponding to f,

Ay =3 (MNP \pr — p)nr =
LD B f) = S/(2)(M)ea -, n=12.
are well known.

THEOREM 1. If f(%) is comtinuous on [0, 1], then B, (z;f)— f(x)
as n— oo wuniformly on [0, 1].

THEOREM II. If f(2), 2 =2 + iy, is analytic in the interior E
of the ellipse with foci at z =0 and z =1, then B,z f)—f(z) as
n— o on K, this convergence being uniform on each closed subset
of E.

The first of these results is due to S. Bernstein [1], the second
to L. V. Kantorovitch [6] (See also 4], [7]).
For f(x) defined on [0, ) the functions

(1.2 Pwif) —e = SELp(2) o<,

form a natural extension of the Bernstein polynomials, the terms of
(1.2) corresponding to a Poisson distribution in much the same manner
as the terms of (1.1) correspond to a binomial distribution. The
functions (1.2) have been considered by Favard [5], Szasz [9], and
Butzer [3] for the real case. The results of Favard and Szasz include
the following analogue of Theorem I.

THEOREM 11I. If f(x) is continuous on [0, =), and if f(x) = O(x4)
[Szasz], or more generally, if f(x) = O(e?®) [Favard] as ©— oo, where
A is a positive, real constant, then P,(x;f)—f(x) as k— o for «
on [0, ), this convergence being uniform on each finite subinterval

of 10, o).
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The order condition f(x) = O(x*) can be replaced by O(e4*) in Szasz’
proof without difficulty through the application of the inequality

(tuz)* 1 i N — ux)(tux)’
= owm? o A

jAj—zizs  A)

= g%.[ux(t — 1) + tle,

valid for 0 < u, x, 6, t, in Szasz’ treatment [9, p. 240] of S,.

In this paper our objective is to obtain an analogue of Theorem
II. Our principal results are stated in § 2 below. In our analysis we
-depend heavily upon the work [10] of Szisz and Yeardley. Bohman
12] considers polynomials of the form e %% 37 , (N2)*/AD)f(\Mn), N =
N(n), in the complex plane, but there seems to be no existing treat-
‘ment of the series (1.2) for the complex case.

2. Principal results Corresponding to the positive number d, let
-p(d) denote the parabolic set {z|/z| < z + 2d*}. We will say that a
function f(z) defined in p(d) has property B in p(d) if there corre-
:sponds to each b, 0 < b < d, a positive number B(b) such that for
.2 € p(b)

@D /@1 = B® exp {Zo— |ap b — 30z~ 9]}

.A collection of functions {f.(#)},<:, each defined in p(d), will be said
“to have property B uniformly in p(d) if there corresponds to each b,
0 < b < d, a positive number B(b), independent of k, such that (2.1)
holds for each f,. Our principal theorem is then

THEOREM IV. Suppose that f(2) is analytic and has property B
“in p(d), where d is a positive number. Then the functions

) = g 5 B (0
@2) P f)=er S p(2), o<k,

-satisfy the following four conditions. (1) Py (z; f) s an entire

_Sfunction of z for each k. (2) Pz, f)—f() as k— = in p(d). (3)
The convergence in (2) s uniform on each compact subset of p(d).
(4) The functions {P,(2[Yw; f)}o<r, where x, = exp[1/(2k)], have proper-
ty B uniformly in p(d).

We note the result of Pollard [8] and Szisz and Yeardley [10]
that, in order that a function f(z) be analytic and have property B
in p(d), 0 < d, it is necessary and sufficient that f(z) possess a Laguerre
.series (of order 0),
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£@) ~ 5 a,Ly@), 0, = |6 L@)f @ ,

which converges to it in p(d). As a consequence of this result, the
hypothesis in Theorem IV that f(z) be analytic and have property B
in p(d) can be replaced by the hypothesis that f(z) possess a Laguerre
series which converges to it in p(d). The result of Szdsz and Yeardley
[10] is valid as well for general Laguerre series.

3. Lemmas for Theorem IV. It is convenient to develop the
proof of Theorem IV in lemmas. Unless the contrary is stated we
assume z arbitrary and 0 < k.

Lemma 1. If f(z) 8 a polynomial, then P.(z;f) is a polynomial
of the same degree as f.

Proof. We can suppose f = 2", where % is a nonnegative integer.
‘We have

A 3
e” > 2\ =e(zD)ye = e
=0 Al fpers

where the ¢ are constants. We obtain then

Pue; f) = e 3, ﬁ@.( A)” _

1 2 (n) i
A=0 )\,I k " J'ZJ)CJ (kZ)

k

and the lemma follows.

We may observe that ¢ = 1. It follows that P.(z;f) — 2" as
k — o for every 2z, the convergence being uniform on each compact
set. The same result then holds for any polynomial.

LEMMA 2. Denote by Gi(z) the polynomial

G"(z) = Py(z; L,) , n=20,1,2 .-,
where L, is the nth Laguerre polynomial of order 0. Then
3.1) |G(@) | = exp(—kx + kx.[z]), n=12-:-,
and

S (in w1 _ —w
(3.2) n};OG; (R)yw™ = g exp{ kz + kzexp [k——(l — w)]} , lw]<1.

Proof. The inequality (8.1) follows from the fact that [11, p. 162]
'(3-3) ILn(w)| = exp (%‘%) ’ 0= r,n = 17 2, .
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For the Laguerre polynomials L, we have [11, p. 100]

S I | —2W
S L@t = L —exp (L), jwi<1,

from which we obtain

or 5 0D S g (M = S () o [k(l—xw ]

Pr=r D W =) k Tl —w S Al — w)

=7 —lw exp {~kz + kzexp[ﬁ]} .

For z, k, w, fixed, |w| < 1, the double series on the left here is abso-
lutely convergent. Interchanging the order of summation in this
series we get (3.2).

LEmMMmA 3. Let
H,(z, w) = %{—kz + kzexp [ﬁ]} .
Then

(3.4) Hyz, w) = pr(lz] — o)A =77, [w[=7r<1.

This is a principal lemma for the proof of Theorem IV. We show
that

(3.5) Hz, w) = ar(jz| — rx)/(1 —r), lwl=r<1,

where a = a(r, k) = exp {r/[k(L + r)]}. This inequality is slightly
stronger than (3.4). The proof is based on the representation (3.6),
the use of which was suggested by the referee and results in a simpler
proof than that originally submitted by the authors for (3.4).

Proof. The inequality (3.5) is trivial for 2 =0 or w=0. We
assume then |z, |w|, k fixed with 2+ 0, 0 < r < 1. We write

z=|z|e?, o=r/dl—17rY, e = wl — o)/[rQ — w)],
a=1/k, d =¢—apsind .

We have then

(3.6) w/l — w) = p(r + ),

and we find that (3.5) holds provided

3.7 T8, ¢) = (aarp — 1) cos ¢ + e~*"+9 co5 @ < aap

for ||, |¢| =< m. Since T is symmetric in the origin in the (4, ¢) —
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plane, it is enough to show that (3.7) holds for (6, ¢) in the rectangle
RO=0=m |¢| .

Suppose first that 1 < aarp. Since e <1 4 tet, 0 < ¢, we then
have

T=<aarp —1+ a < aarp + aar/(1 + r) = aap,

which is (3.7) for this case.
Suppose then that aarp < 1. Let (6, ¢) denote a maximal point.
of T on R. We consider three possible cases

0=0, 0=m, o<,
If 6 =0, then
T=(aarp — 1 + e/ cos ¢ .
If the coefficient of cos ¢ here is nonnegative, we have immediately
T =< aarp = acp .
If this coefficient is negative, we have

T < e¥/0-n(e¥!4=" — 1) — aarp

Zar/l—r)—aarp < aap .
If 6 = m, then
T=(aarp — 1+ a)cos ¢ < ap .

Accordingly, to complete the proof it remains to consider the case:
o<,

At (0, ¢) both first partial derivatives of T vanish. Accordingly
we obtain

(3.8) sin (0 + @) =sinfcos @ + cos 0sin@ =0,
(aarp — 1) sin ¢ + e~ T+ gin @ =0,

From these relations we then get

Tsin 0 = (aarp — 1) sin 6 cos ¢ + e~%"+s9 gin § cos @
= (aarp — 1) sin 0 cos ¢ — e~®"+°%9 ¢og ¢ sin @
= (aarp — 1) sin (6 + ¢) .

Now from (3.8) ¢ + @ = nw, where n =0, +1,---. Thus 0 + ¢ =
0+ @+ apsin 0 = nw + apsin 0, and

3.9) Tsin 6 = (aarp — 1) sin (n7 + apsin 0) .
From (3.9) we get, since aarp <1 and 0< 0 <7,
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{3.10) Tsind < (1 —aarp)apsin < apsind .
The inequality (3.10) gives T < aap, which completes the proof.

LemmA 4. Let a, B, be positive constants such that a < .
Put u(t) = 40/t + tB*/(4 + t). Then

I 8,7 = | : __le_t = exp [—u) - izf]dt < M) exp (@ — 206) ,

where
M) = e[]2 + VT [(16a®)]/(e — 1) .

This lemma and the next two are closely related to results obtained
by Szasz and Yeardley [10]. Our proofs are somewhat different from
theirs. The precise bound M, appearing in Lemma 6 does not occur
in their article.

Proof. If a =B, then u(t) = a® + 16a?/[t(4 + t)] > a® = 208 —
for 0 <. If a < B, then u(t) has the minimum value 2a8 — &* on
this interval. Thus

I<exp(e— 2‘“3)5:?164'2%/7 exp <_ 4%>dt '

For 0<t<1 we have t(1 —1/e) <1 —e¢%, and for 1 =<t we have
1—-1/e £1— e, This gives

I < [e/(e — 1)] exp (&® — 2a/5)
X [Slt—""” exp (—4a/t)ydt + Swt’m exp (—4a2/t)dt] .

Now
S:t—m exp (—4a?/t)dt < g:t—m exp (—4atft)dt = /7 [(167Y) ,
S‘:t—s” exp (—4v'ft)dt < S?t‘a’zdt ~2,
and the lemma follows.
LEMMA 5. IfF0<b<e and

o 2 —t/2
J(,e¢,z) = SO 1 1‘ e_c?alk‘ exp [_itc_ + 12f_ — (lz] — a;@t/z)]dt ,

then
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1 1/2
J(b, ¢, 2) = Mib, ) exp {w — 2w ][ - ~(zl- [}

Sor ze p(b), where
My, ¢) = " My((c* — b)) .
Proof. Suppose z ¢ p(b), so that 0 < b* + . From the inequalities

e (1 — e ) £ 1/t, e (1 — e 1)1 — e7') < 2/(4 + ¢), valid for 0 < ¢,
we then obtain for 0 < ¢

2 (al - me) = 22— w4 w1 — o]
=2 izl — a4 Y — )]
<2(z] — )/t + 4 + b)/(4 + t)
=2lz| — )t + x4+ 0 —tx+ )4 +1).
Thus
b2 | 1 1 —4(02“—62)__4_ 2_____1_ -
Jser| ol LR 2 Lz -]
_ M}dt ,
4+t

Since b — (2| — 2) < % + b*, Lemma 4 is applicable. Applying this
lemma we then get for z < p(b)

J < et M — b))
- exp {b2 — —;—(, 2]l —a) — 2z + b2)1/2[b2 _ _;_(, 2| — x)]llz} .

Now |z|"2 —b = (x + b)"* for z€ p(b), and the lemma follows readily.
LEMMA 6. Suppose 0 < b < ec. Then
S (Gl 1) [ exp (— 4oy )
1 1/2
< My, c) exp {x — 2w 1“2[b2 - 21zl - x)] }

for ze p(b), where
My, ¢) = (2¢V/ ) My(b, ©) .

Proof. Let C,, 0 < r <1, denote the circle of radius r about the
origin in the w-plane. Making use of Lemmas 2 and 8 and a classical
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integral formula we obtain

11:20 ‘ G;cn)(z) ‘2 ,'.2n — 1 S 1

2nr Jo

- exp{—kz + kz exp[m:—)]}i |dw|

_ 1 1 .
- 2 Sar 11— w| exp [2H,(z; w)] [ dw |

l|/\

Lt exp e — ro)l(L — )} dw |
ar Jo, |1 — w |’
= ——exp 22| — r)/(L — )] .

Thus, if 0 < ¢, then

S 1GPE) e
= [1/(1 — e™)] exp {2e™"(|2] — 2e~2)/(1 — e} .
On the other hand,

exp (—4eV/ ) = (2¢/V/ ) j:t—m exp (—nt — A¢Jt)dt ..
Hence, applying Lemma 5, we get
321G (els) [ exp (—dev/m)
= 2]V T) 36l |+ exp (—nt — 4et)dt
(20/1/71')3 o exp( (402/t)[§,0|Gk(z/xk) Pexp(—nt)]dt)“
e[S e - e
= @V E)M, o exp {w — 2[a P[4 — L(z| — )|}

= @/ |

for ze€ p(b). This is the required inequality.

4. Proof of Theorem IV. Assume the hypotheses of Theorem:
IV hold. We note first that under these hypotheses f(x) satisfies

(4.1) [f(@)]| < Ae”, O0==,

for some positive constant A. It is seen then that the series in (2.2) -
converges for z, k arbitrary, 0 < k. Thus conclusion (1) of Theorem
IV holds.

Next, by the theorem of Pollard, and Szasz and Yeardley noted
in §2 above, the hypotheses of Theorem IV imply that f can be repre- -
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sented in p(d) by a convergent Laguerre series:
2 f@=Fel@zepd; a0, = | e L@@ .
n=0 0

From the convergence in p(d) of the series (4.2) it follows that, if ¢
is an arbitrary positive number, then

(4'3) |an1 = AE exp [2%(*—d + 5)] ’ n = 17 2, e

for a suitably chosen positive constant A.. From (4.3) we obtain
@8 316 < o, M@ F) =3 |a,l exp eV n) < o

the latter provided 0 < ¢ < d.
Now consider P,(z;f). We have formally

oo

“.5) Pz f) = o 5 E S 0 L,00m)

A=0

el )

I

il
M

a,GM(z) .

=0

It

Making use of (8.3) and the first inequality in (4.4) we see that the
series in the first line of (4.5) converges absolutely for z, k& arbitrary,
0 < k. This justifies the formal manipulation in (4.5) and we ac-
cordingly have

(4.6) Pz f) = $0,617()
for z, k arbitrary, 0 < k. From (4.6) we get
| P )< S0l exp (dev/ ) 511G Pexp (— 401/ ) .
Thus, by Lemma 6, if 0 < b < ¢ < d, then
| PuCef DI S Mes £)- Mo, 0 -exp {o — 2|26 =2 (2l = )|}

for ze p(b). For a fixed b, 0 < b < d, on taking ¢ = %(b + d), say,
we find then that conclusion (4) holds with

B(b) = [M(c; HMy(b, O], ¢= %(b +d).

It remains to consider conclusions (2) and (3). It is enough to show
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that, if S is a compact subset of »(d), then P,(z;f)— f(z), k— =,
uniformly on S. For 0 < b, 0 < x, let

U, z) = {z||z| < 2+ 2% ¢ < @} .

Choose b, b,, bs; %, X,, %, such that 0 < b, < b, < b, < d, 0 < 2, < X, < 5,
and Sc U(b, ;). Making use of conclusion (4), we infer that there
exists a constant M* such that

| Pu(y f) | = M*, z€ U(by, @) -

Choose k, = max {[4 - In(by/b))]"", [2 - In(as/2,)]}. Then for k, < k and
ze€ U(b, x,) we have zx, € U(b,, ;). Thus

47 [Pz )] = | Pl £)| = M*, b < k,z€ Uby, @) .
Recalling (4.1), we have also, by Theorem III,
Pa; f)—f(®),k— o, 0<2<w,.

By an application of Vitali’s theorem, {P\(2; f)}, <, converges uniformly
on U(b, x,) to a function F'(z), analytic on U(b, %). Since f(z) is.
analytic on U(b,, «,) and F'(x) = f(x), 0 < z < x,, it follows that F(z) =
f(2) throughout U (b, x,), and the proof of complete.
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