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1. Introduction. The concept of "linked operators" was introduced
by A. E. Taylor and the author in [1]. This concept was originally
suggested by work involving bounded linear operators on the sequence
spaces lp. For example, if the infinite matrix (ί^) defines operators
Tp and Tq that are bounded on lp and lq, respectively, then these
operators are linked. The somewhat complicated general definition of
linked operators is deferred until § 2 of this paper. In [1] an isolated,
specific example of linked operators with different spectra was given.
The purpose of this paper is to exhibit three infinite semigroups of
infinite matrices {ti5), with complex coefficients, such that each of their
elements defines linked operators with different spectra.

In the next section we give some preliminary definitions and
notation and in the final section we prove a basic lemma and our
principal theorems.

2 Preliminary definitions and notation* We first give the definition
of linked operators.

DEFINITION. Let X, Y be complex linear spaces, and Z a non-void
complex linear space contained in both X and Y. Let X be a Banach
space Xl9 Y a Banach space Y2 under the norms nlf n2 respectively.
Let Z be a Banach space ZN under the norm N defined by N(z) =
max [fti(z), n2(z)]. With the usual uniform norms let Tlf T2 be bounded
linear operators on Xlf Y2 respectively, such that Tλz — T2ze Z when
ze Z. Operators satisfying these conditions are said to be "linked."

Our basic notation will be as follows: If T denotes the infinite
matrix (t^ ), with complex coefficients, then T* will denote its transpose,
and T the matrix (t^), where z is the complex conjugate of z. Let
Tp denote the operator defined on lp by the matrix T, \\TP\\ its norm,
and [lp] the algebra of bounded linear operators on lp. Also let p( Tp)
denote the resolvent set of Tp, consisting of all complex λ such that
XI — Tp defines a one-to-one correspondence of lp onto lp; σ(Tp) denote
the spectrum of Tp, consisting of all λ not in p(Tp); and \σ(Tp)\ the
spectral radius of Tp.

The matrix (ί^ ) is said to be "regular" in case for every convergent
sequence [ζn], lim*-*, ζn = ζ, each of the series Σ"=i*ί*C* is convergent
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and lim ôo Σ~=i *<jbCk = C It is well known that a set of necessary
and sufficient conditions for a matrix to be regular are:

(1) sup Σ I ί<A | < co
i k = l

(2) Km tik = 0 for k = 1, 2,
ί—>oo

(3) lim Σ ί« = 1 .

3* Principal theorems•

LEMMA. Suppose that C = (<?<,•) αwd D = (c£̂  ) define elements of
[k], and CVH d || α r̂f £>VIIAII are regular. Then (CDYHKCDMl is
regular and \\ (CD), || = || d || || A ||.

Proof. Since the product of regular matrices exists and is regular,

we have,

lim V V ik kj — 1

whence,

1 = lim d\k Σ

Therefore || (CD), \\ = || Cx || || A ||, and D*Cη\\ A I! II d II
is regular. The following result is a simple consequence of this lemma,
coupled with the well known fact that

whenever Te[X], where X is a complex Banach space.

COROLLARY. IfTe [I,] and T'/11 Tx \ \ is regular, then \ σ{ Tx) \ = 11 Tx \ \.

We are now ready for our principal theorems.

THEOREM 1. Suppose that both T = (ti3 ) and Tι = (t\5) define
elements of [ZJ, ΓVII^ill is regular, and \\ T[ | | < || 2\ ||. Then
\σ{T1)\>\σ{Tv)\yp>l.

Proof. Using the fact that the spectral radius of an operator is
less than or equal to its norm, and the special case where q = 1, of
the inequality

II Tp II ^ II Tq
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p between q and qr, (which in turn is a special case of a more general
inequality, (2), p. 729 in [2]), we see that

(Δ\ I rrί'V \ I < " 11 T* 11 < " 11 T ' I I I / P I I rΓt 111—i/p

\Ά) I σ\1
 P) I = II Lv II == II 1i II II i i II

Since by hypothesis || Tί || < || Tλ ||, it follows immediately that
I σ(Tp) I < || Tx ||. But since by since by hypothesis TV 11 Tx || is regular,
we have by our corollary that \\T1\\ — \σ(T^)\J and our theorem is proved.

One might wonder if the result of Theorem 1 is perhaps attributable
to the "lopsided" nature of the matrix; that is, the property that the
supremum of the lλ norms of the column vectors is greater than that
of the row vectors. The following theorem demonstrates that is not
the case.

THEOREM 2. Suppose that both T/|| Tί || and Γ7H 2\ || are regular
and that \\ T(\\ < \\ Tλ\\. Then A = Tι + Tis a hermitian symmetric
matrix such that \ σ{Ap) \ < | σ(Aλ) |, 1 < p < oo.

Proof. The assumptions of regularity guarantee that

oo oo oo i

lim Σ tij = || Tx || and lim Σ *ίy = l. ίm Σ *<i = II T} \\ .

Thus we see that

HΓJI + \\fi\\ ^\\TX+ fill ^ lim sup

whence || 2\ + T{ || = || 2\|| + || T{ | |.
Now

Σ (ί« — II -* l II i II J-1

the last inequality being a result of (A) above. We shall now show
that the right hand member of this inequality is less than || 2\ || + || T} | |.

From the hypothesis that || T} \\ < \\ Tλ ||, we can conclude that
I I T . H 1 ^ - II T / I I ^ X ) a n d || Tί |Γ- ( 1 / P ) - II T J I 1 - ^ < 0 for l < p < oo.
I t is n o w a n i m m e d i a t e c o n s e q u e n c e t h a t

0 > (|| Γ J I 1 " - I! Γί m f l l Γ / l l 1 - ^ - II Γ J I 1 - ^ )
= -II Txll - II Tί | | + II ΓJI 1 " II T ί H 1 - ^ + II T ^ l 1 - ^ II Γί |Γ / p ,

whence

II Ά \\v* || Tί H 1 - ^ + ii τt n 1 - ^ ii Tί i r < ii τλ ii + ii Γί i i .

Using these inequalities together with the fact that
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\σ(T,+ Tl)\£\\T,+ f*||,

we see that

\σ(Tp + Tt

p)\<\\T1+ T i \ \ .

It is obvious that the operator

Tt + Tj

WΆ+ Tί\\

is regular and thus

\σ(T,+ T 1

t ) | = | | Γ 1 + f i l l .

This with the last inequality implies the desired conclusion,

\σ(TP + TD\<\σ(T1+ Tl)\.

THEOREM 3. Suppose T = (ί4ί) defines an element of [l^\, ti} is
positive for all i and j , and the infimum of the column sums of T
is greater than \\TP\\. Then | σ(Tp) | < | σ(2\) |.

Proof. Let TΛ = (t[f), n>l. By hypothesis inf, ΣΓ=iί<i=^>|| Tp ||.
If infi ΣΓ=x t(tf ^ K*. then

inf Σ t»+1> = inf Σ Σ WίM = inf ( έ ί*/ Σ «»'

^ inf Σ t4yίΓ = ίΓw+1 .
i fc=i

Thus by induction we have infs Σ?=ι tϊf ^ Kn for all n. It follows
that || Γi* || ^ JL" for all n, whence

and our theorem is proved.

Final Remarks. Matrices satisfying the hypotheses of the above
theorems are easily constructable. The matrix T — (tiά),

_ P'/tf - ^ if i > i
< y " l o i ί i s s i ,

cited in [1], satisfies the hypotheses of each of theorems (where in
particular p = 2 in Theorem 3).

That the set of matrices satisfying the hypotheses of any one of
these theorems forms a semigroup is a simple matter of computation.
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