Pacific Journal of Mathematics

AN EFFECTLESS CUTTING OF A VIBRATING MEMBRANE

HANS F. WEINBERGER

Vol. 13, No. 4

June 1963

AN EFFECTLESS CUTTING OF A VIBRATING MEMBRANE

H. F. WEINBERGER

Let G be a multiply connected domain bounded by an outer boundary Γ_0 , inner boundaries $\Gamma_1, \Gamma_2, \cdots$, and possibly some other inner boundaries $\gamma_1, \gamma_2, \cdots$. Let u be the eigenfunction corresponding to the lowest eigenvalue λ_1 of the membrane problem

(1) $\Delta u + \lambda_1 u = 0 \quad \text{in } G$

with

(2)
$$u = 0 \text{ on } \Gamma_0, \Gamma_1, \cdots$$

 $\frac{\partial u}{\partial n} = 0 \text{ on } \gamma_1, \gamma_2, \cdots.$

We shall show that there exists a cut $\tilde{\gamma}$ consisting of a finite set of analytic arcs along which $(\partial u/\partial n) = 0$ which separates any given one of the fixed holes, say Γ_1 , from the outer boundary Γ_0 and the other holes $\Gamma_2, \Gamma_3, \cdots$. This means that the membrane G may be cut in two along $\tilde{\gamma}$ without lowering its lowest eigenvalue. This fact is used in the preceding paper of J. Hersch to establish an upper bound for λ_1 .

We assume that $\Gamma_0, \Gamma_1, \cdots$ have continuous normals and that $\gamma_1, \gamma_2, \cdots$ are analytic. Then it is well-known that u has the following properties:

- (3) (a) u > 0 in G, and $\frac{\partial u}{\partial n} < 0$ on $\Gamma_0, \Gamma_1, \cdots$.
 - (b) u is analytic in $G + \gamma_1 + \gamma_2 + \cdots$.
 - (c) u_{xx} and u_{yy} do not vanish simultaneously.

(The last property follows from (3a) and (1)).

We define G_1 to be the set of points of G from which the fall lines, i.e. the trajectories of

$$(4) \qquad \qquad \frac{dx}{dt} = -u_x$$
$$\frac{dy}{dt} = -u_y$$

reach Γ_1 . By property (3a) G_1 contains a neighborhood in G of Γ_1 , and its exterior contains neighborhoods in G of $\Gamma_0, \Gamma_2, \cdots$. Since u_x

Received August 23, 1962. Prepared under Contract Nonr 710 (16) between the Office of Naval Research and the University of Minnesota.

and u_y are continuous, G_1 is open.

Let $\tilde{\gamma}$ be the part of the boundary of G_1 that lies in G. Let P be a point of $\tilde{\gamma}$ where the gradient of u does not vanish. Then there is a trajectory γ satisfying (4) through P. Let Q be any other point on γ . Since P is not in G_1 , it follows from the definition that Q is not in G_1 . On the other hand, if a whole neighborhood of Q were not in G_1 , it would follow from the continuity of the trajectories with respect to their initial points that a whole neighborhood of P would be outside G_1 . This would contradict the fact that P is a boundary point of G_1 .

Thus we have shown that the whole trajectory γ lies in $\tilde{\gamma}$. It cannot go to Γ_1 . Since the set of points from which trajectories go to $\Gamma_0, \Gamma_2, \cdots$ is also open, γ cannot go to these boundary components.

We note that u is monotone on γ , and

(5)
$$\left|\frac{du}{ds}\right| = |\operatorname{grad} u|$$
.

Thus γ is either of finite length, or it must contain a sequence of points Q_1, Q_2, \cdots on which grad u approaches zero. These will have a limit point Q at which grad u = 0. (It may be that Q lies on one of the γ_i . In this case we think of u extended across γ_i as an analytic function by reflection).

There is a neighborhood of Q in which the trajectories can be determined by examining the first few terms of the power series for u. Using property (3c), we find that γ is of finite length. This is, of course, true in both the t and -t directions.

The free boundary curves γ_i are composed of trajectories of (4) and critical points, i.e., points where grad u = 0. Hence it follows from the uniqueness of the initial value problem for (4) that if γ ends on γ_i , the end point must again be a critical point. Thus, each trajectory γ in $\tilde{\gamma}$ connects two critical points.

It follows from properties (3b) and (3c) and the implicit function theorem that a critical point Q is either an isolated critical point or lies on an analytic arc of critical points. These arcs are again isolated.

Thus we have shown that $\tilde{\gamma}$ is composed of a finite number of analytic arcs of finite length along which $(\partial u/\partial n) = 0$, and a finite number of critical points. We delete any isolated points of $\tilde{\gamma}$.

The fact that $\tilde{\gamma}$ separates Γ_1 from $\Gamma_0, \Gamma_2, \cdots$ is clear from the definition of G_1 .

The above considerations apply to any function with properties (3).

The author wishes to thank J. Hersch and D. Ludwig for helpful discussions of this problem.

UNIVERSITY OF MINNESOTA

1240

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RALPH S. PHILLIPS Stanford University Stanford, California

M. G. ARSOVE University of Washington Seattle 5, Washington J. Dugundji

University of Southern California Los Angeles 7, California

LOWELL J. PAIGE University of California Los Angeles 24, California

ASSOCIATE EDITORS

E. F. BECKENBACH	D. DERRY	H. L. ROYDEN	E. G. STRAUS
T. M. CHERRY	M. OHTSUKA	E. SPANIER	F. WOLF

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA	STANFORD UNIVERSITY
CALIFORNIA INSTITUTE OF TECHNOLOGY	UNIVERSITY OF TOKYO
UNIVERSITY OF CALIFORNIA	UNIVERSITY OF UTAH
MONTANA STATE UNIVERSITY	WASHINGTON STATE UNIVERSITY
UNIVERSITY OF NEVADA	UNIVERSITY OF WASHINGTON
NEW MEXICO STATE UNIVERSITY	* * *
OREGON STATE UNIVERSITY	AMERICAN MATHEMATICAL SOCIETY
UNIVERSITY OF OREGON	CALIFORNIA RESEARCH CORPORATION
OSAKA UNIVERSITY	SPACE TECHNOLOGY LABORATORIES
UNIVERSITY OF SOUTHERN CALIFORNIA	NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published quarterly, in March, June, September, and December. Effective with Volume 13 the price per volume (4 numbers) is \$18.00; single issues, \$5.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: \$8.00 per volume; single issues \$2.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Pacific Journal of Mathematics Vol. 13, No. 4 June, 1963

Dallas O. Banks, Bounds for eigenvalues and generalized convexity	1031		
Jerrold William Bebernes, A subfunction approach to a boundary value problem for	1052		
	1053 1067		
Woodrow Wilson Bledsoe and A. P. Morse, <i>A topological measure construction</i>			
George Clements, <i>Entropies of several sets of real valued functions</i>			
	1097		
William John Andrew Culmer and William Ashton Harris, <i>Convergent solutions of</i> ordinary linear homogeneous difference equations	1111		
	1139		
	1143		
	1159		
J. J. Gergen, Francis G. Dressel and Wilbur Hallan Purcell, Jr., <i>Convergence of extended Bernstein polynomials in the complex plane</i>			
Irving Leonard Glicksberg, A remark on analyticity of function algebras Charles John August Halberg, Jr., Semigroups of matrices defining linked operators	1101		
with different spectra	1187		
Philip Hartman and Nelson Onuchic, On the asymptotic integration of ordinary			
	1193		
	1209		
Joseph Hersch, The method of interior parallels applied to polygonal or multiply connected membranes	1229		
Hans F. Weinberger, An effectless cutting of a vibrating membrane	1239		
Melvin F. Janowitz, <i>Quantifiers and orthomodular lattices</i>	1241		
Samuel Karlin and Albert Boris J. Novikoff, <i>Generalized convex inequalities</i>	1251		
Tilla Weinstein, Another conformal structure on immersed surfaces of negative curvature	1281		
Gregers Louis Krabbe, Spectral permanence of scalar operators	1289		
Shige Toshi Kuroda, Finite-dimensional perturbation and a representation of			
scattering operator	1305		
Marvin David Marcus and Afton Herbert Cayford, Equality in certain	1210		
	1319		
	1331		
	1335		
· · · · · · · · · · · · · · · · · · ·	1343		
	1347		
3	1353		
Miroslav Novotný, Über Abbildungen von Mengen	1359		
Robert Dean Ryan, Conjugate functions in Orlicz spaces			
John Vincent Ryff, On the representation of doubly stochastic operators			
Donald Ray Sherbert, Banach algebras of Lipschitz functions	1387		
James McLean Sloss, <i>Reflection of biharmonic functions across analytic boundary conditions with examples</i>	1401		
L. Bruce Treybig, Concerning homogeneity in totally ordered, connected topological			
space			
John Wermer, The space of real parts of a function algebra	1423		
James Juei-Chin Yeh, Orthogonal developments of functionals and related theorems			
in the Wiener space of functions of two variables			