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R. H. Bing has shown [2] that E3 (Euclidean three dimensional
space) does not contain uncountably many mutually disjoint wild 2-
spheres. J. R. Stallings has given an example [6] to show that Ez

does contain uncountably many mutually disjoint wild disks. It is the
goal of this note to show that E3 does not contain uncountably many
mutually disjoint disks each of which fails to lie on a 2-sphere in E'\
(A disk which fails to lie on a 2-sphere is necessarily wild.) For
definitions the reader is referred to [1],

THEOREM 1. If V is an uncountable collection of mutually dis-
joint disks in E3 then there exists a disk D of the collection V such
that D lies on a 2-sphere in E3.

The proof of Theorem 1 follows immediately from the following
three lemmas.

LEMMA 1. If V is an uncountable collection of mutually disjoint
disks in E3 then there exists an uncountable subcollection F* of V
such that if D belongs to V*, x is an interior point of D, ax is an
arc intersecting D only in the point x, and ε is a positive number
then there exists an uncountable subcollection VΊ of F* such that if
A is an element of Vx then (i) A Π ax Φ Φ and (ii) there is a homeo-
morphism of A onto D which moves no point more than ε.

Proof. Let V be an uncountable collection of mutually disjoint
disks in E3. Let V denote the subcollection of V defined as follows:
D is an element of V if and only if there exist a point x of Int D,
an arc ax intersecting D only in x, and a positive number ε such
that there is no uncountable subcollection Vx of V such that if A
belongs to VΊ then (i) A Π a% Φ Φ and (ii) there is a homeomorphism
of A onto D which moves no point more than ε.

It is clear that in order to establish Lemma 1 it is sufficient to
show that the collection V is countable. Suppose that V is un-
countable.

For each element Da of V let an arc aa and a positive number
εa be chosen such that (i) the common part of Da and aa is an end-
point of aΛ which is on the interior of Da, and (ii) αα intersects only
a countable number of elements D of V such that there is a homeo-
morphism of D onto A> which moves no point by more than eΛ.
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Let ε be a positive number and V" be an uncountable subcollec-
tion of V such that if A> is an element of V" then ε < εa.

Let £/be a disk and v be an arc such that the common part of
E and v is an endpoint of v which is on the interior of E. For each
element DΛ of V" let hΛ be a homeomorphism of E U v onto A> U α*.
Now {ha; DΛ € F"} with the distance function

D(ha, hβ) = max p(K(t), hβ(t))
teEUv

is a metric space. In [3] (Theorem 2) Borsuk shows that this metric
space is separable. It follows that there exists an element DΛQ of V"
such that if d is a positive number then {hβ; D(hβ, ha) < δ} is un-
countable. Let haQ be denoted by h0, ho(E) be denoted by Do, and
ho(v) be denoted by α0.

Let the endpoints of a0 be denoted by x and y and assume that
the notation is chosen so that y e Int Do. Let zyx be an arc such that
a0 c £## and zyx pierces A at #• Let zwx be an arc in E* — A such
that zwx n 22/# = {z, x}, and let J denote the simple closed curve
zyx U zwx. Since J U A = {v} it follows that 5cί Do links J.

Now let εx be a positive number such that 2εx is less than the
minimum of ε, dist (/, Bd Do), and dist (zwx, Do).

Let H be {hβ; D(hβ, h0) < εJ2}, and let V" be the set of all ele-
ments of V" such that D e V" if and only if there exists an element
h of H such that h(E) = D. Now if A and A are two elements of
V" then there exists a homeomorphism of A onto A that moves no
point more than εx.

Suppose that D is an element of V". Then since 2εx < dist (J, Bd Do),
Bd A links J, and there is a homeomorphism of A onto D which
moves no point more than εJ2 it follows that Bd D links J, and hence
that JdDΦ φ. Since 2εx < dist (zwx, Do), DftzyxΦ φ.

Now for each element ΌΛ of V" let PΛ be the greatest point of
Da Π zyx in the order from z to a? on zyx. Now there exists an ele-
ment Dy of V" such that for uncountably many elements DΛ of F'",
Pa is greater than P7. But since 2εx < dist (x, AX 2εx < dist (/, Bd Do),
and for each element Da of F " ' there is a homeomorphism of A U <*o
onto A* U aΛ which moves no point more than εJ2, it follows that ay

intersects every element Da of V" such that Pa is greater than Py.
This is because ay may be completed to a simple closed curve J' which
links Bd Da and which intersects DΛ only in α7. Hence aΊ intersects
uncountably many elements of the collection V". This is contradic-
tory to the way in which ay was chosen and it follows that the col-
lection V is countable. This establishes Lemma 1.

LEMMA 2. Suppose that V is an uncountable collection of mutu-
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ally disjoint disks in E3. Then there exists a disk D of the collection
V such that D is locally tame at each point of Int D.

Proof. Let V be an uncountable collection of mutually disjoint
disks in E3. Let F* be an uncountable subcollection of V satisfying
the conclusion of Lemma 1. Let D be an element of the collection
F* and let p be an interior point of D. By Theorem 5 of [1] there

exists a subdisk Df of D and a 2-sphere S in E3 such that p e Int D'
and Df c S. Without loss of generality it may be assumed that
ape Int Sand pb c Ext S. Now there exist sequences DJ)2 and
C1C2 of disks of the collection F* such that for each i, (1) Dt Π ap Φ
Φ, (2) Ci Π pb Φ Φ, and (3) there exist homeomorphisms ft and gt of
Di and Ci9 respectively, onto D which move no point more than 1/i.

Let D" be a subdisk of D' such that p e Int D" and D" c Int D'.
Now without loss of generality it may be assumed that each of fr\D")9

f2-\D")- - lies in IntS and that each of gϊ\D"), ffΓ'ΦΌ lies in
Ext S. It follows from Theorem 9 of [1] that S is locally tame at p
and hence that D is locally tame at p. This establishes Lemma 2.

LEMMA 3. If D is a disk in E3 and D is locally tame at each
point of Int D then D lies on a 2-sphere in E3.

Proof. Let I? be a disk in E3 which is locally tame at each point
of Int D. It follows from [5] that there exists a homeomorphism h of
Ed onto itself such that h(D) is locally polyhedral except on h(Bd D).
It follows from the proof of Lemma 5.1 of [4] that there exists a 2-
sphere S in E3 such that h(D) c S. Then hr^S) is a 2-sphere in E3

such that Dahr^S). This establishes Lemma 3.
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