
Pacific Journal of
Mathematics

ON THE INTEGER SOLUTIONS OF y( y + 1) = x(x + 1)(x + 2)

LOUIS JOEL MORDELL

Vol. 13, No. 4 June 1963



ON THE INTEGER SOLUTIONS OF y{y + l) = x{x+l){x + 2)

L. J. MORDELL

This paper contains a solution of the following problem proposed
to me by Professor Burton Jones to whom it was given by Mr. Edgar
Emerson.

Problem. To show that the only integer solutions of

(1) y(y + 1) = x(x + l)(x + 2)

are given by

(2) x = 0, - 1 , - 2 , y = 0, - 1 ; x = 1, y = 2, - 3 , x = 5, y = 14, -15 .

Put
2y + 1 = Y, 2x + 2 = X .

Then

(3) 2Y2 = X 3 - 4 X + 2 .

Obviously X in (3) cannot be odd so it must be shown that the
only integer solutions of (3) are given by

(4) Z = 0 , ±2,4,12.

Diophantine equations of the form

(5) Ey2 = Ax" + Bx2+ Cx + D

where Af B, C, D, E are integers are well known. I proved1'2 in 1922
that the equation had only a finite number of integer solutions when
the right hand side had no squared factor in x. In fact, this followed
immediately from a result3 I proved in 1913, by quoting Thue's result
but which I did not know at that time. Finding these solutions may
be a troublesome matter, involving many details, and usually rather
difficult or even too difficult, to do.

One method requires a discussion of the field R{Θ) defined by

(6) Aθ* + Bθ2 + Cθ + D = 0 .

Received November 12, 1962. I should like to thank the referee for his comments
on my manuscript. This research was supported by the Air Force Office of Scientific
Research.

1 "Note on the integer solutions of the equation Ey2 = Ax3 + Bx2 + Cx + D" Messenger
of Math., 5 1 (1922), 169-171.

2 ' O n the integer solutions of the equation ey2 = axz + bx2 + cx + d" Proc. London
Math. Soc, 2 1 (1923), 415-419.

3 "Indeterminate Equations of the third and forth degrees" Quarterly Journal of
Mathematics 4 5 (1914).
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Less arithmetical knowledge may be needed if the equation is reducible
in the rational field R. In general, the field is a cubic field R{θ) and
then we require a knowledge of

(1) The expression for the integers of R(β).
(2) The number h of classes of ideals in R(θ).
(3) The fundamental unit when the equation (6) has only one real

solution, and the two fundamental units when all the roots of (6) are real.
Ideal factorization theory may now be applied in (5) on noting

that x — θ is a factor of the right hand side. The results so found
require the solution in integers P,Q, R of a finite number of pairs of
simultaneous quadratic equations

(7) F(P, Q, R) = 0, G(P, Q, R) = 1 ,

where F and G are homogeneous polynomials of the second degree with
rational integer coefficients. In general, it is difficult to find all the
integer solutions of (7), but in some simple instances, they can be easily
found. The difficulty is increased when there are two fundamental units.

In (3), the field R(θ) is defined by

<8) f{θ) = θ3 - 40 + 2 = 0 .

The arithmetical details are given in the table on page 112, of
Delaunay and Faddeev's book (in Russian) on "The theory of the
irrationalities of the third degree".
Thus

(1) the integers are given by a + bθ + cθ2 where α, b, c are
rational integers,

(2) the class number k — 1 and so unique factorization exists in

(3) there are two fundamental units

ε = θ - 1 , and η = 2Θ - 1 .

All the units are given by ±ειηm where Z, m, run through all
integer values positive, negative and zero.

We require the factorization of 2. Since f(x) = x3 (mod 2), the
general theory shows that 2 is a perfect cube except for unit factors,
and since

we would expect 2 ± θ to be associated with θ, namely that ψ — 2/θ ± 1
ds an integral unit. In fact,

8 8 ι 2 - Q

(φ + I)3 ψ =F 1
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or

(φ T I)3 - 4(y + I)2 + 4 - 0

and this proves the result about φ. Hence 2 .= ζ#3 where ζ is a unit,
and it is easily seen from this that θ is a prime in R(θ).

Write (3) in the form

<10) (X - θ) (X2 + ΘX + θ2 - 4) - ζθzY2 .

We now show that θ is a common divisor of the two left hand
factors of (10). Since I Ξ O (mod 2), and S O I Ξ O (mod #3), θ divides
X - θ and X 2 + Xθ + #2 - 4 but 02 does not divide X - θ. We show
that 40 — 3 is a possible common divisor and note that 40 — 3 is a
prime since its norm is given by iV(4# — 3) = —37. Any common divisor
must also divide

θ2 + θ2 + θ2 - 4 - Sθ2 - 4 = (3#3 - 40)/0 = -(80 - 6)/0 = 2(40 - 3)/0 ,

and so 40 — 3 may occur.
We have two cases according as X— θ is not or is divisible by 4# — 3.
The second case reduces very simply to the first case. Let (40 — 3)w

Ίoe the highest power of 4# — 3 dividing X — θ. Then since unique factori-
zation exists in the cubic field R(θ),

X - β = ±θ(4:θ - 3)n ειψ (a + bθ + cθ2)2,

where I, m are any integers positive, negative or zero. Take the norm
of both sides. Then

2= ±2(37)V,

say. Put X — 2X, and then

4 X 1

3 - 4 X 1 + 1 = ± ( 3 7 ) V .

Since the left hand side is = 1 (mod 8), we have an impossible
congruence (mod 8) if n is odd. If n is even, we can absorb (40 — 3)w

in (a + bθ + cθ2)2. We are then led to an equation of the same form
.as in the first case, that is, X — θ is prime to 4# — 3, and is divisible
by θ but not by θ2.

From (10), we have in the first case

(11) X - θ = ±θει ψ(a + bθ + c02)2 .

Clearly it suffices to consider only the four cases

(ϊ,m) = (0,0), (1,0), (0,1), (1,1)

on absorbing even powers of ε, η in the square term. On using (8),
we can write
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(12) (a + bθ + cθ2)2 = a2 - 46c + θ{2ab + 86c - 2c2)

+ 02(δ2 + 2αc + 4c2) .

Take first (I, m) = (0, 0). Then using (8) and equating terms in
ϋy θ2 on both sides of (11), we have

0 = 2αδ + 86c - 2c2,
( 1 3 ) + 1 = α2 - Abe + 4(62 + 2αc + 4c2) .

A congruence mod 4, shows that the plus sign should be taken.
Write (13) as

b(a + 4c) = c2, (a + 4c)2 + 4δ2 - 46c = 1 .

When 6 = 0, this gives c = 0, a = ±1.
If 6 Φ 0,

c4/δ2 + 462 - 4δc = 1 .

The minimum value of the left hand side is δ2 given when c = 6, and
so 6 = ± 1 , c = ± 1 , a = + 3.

Since from (11), we have

-X = -2(62 + 2αc + 4c2) ,

we have

X = 0 , - 2 .

Take next I = 0, m — 1. On multiplying (11) by θ, absorbing θ2

in the squared term, and with a slight change of notation, we have

±{ΘX - θ2) = (1 - 20) {a2 - 4δc + 0(2α& + 8δc - 2c2)

+ Θ2(2ac + δ2 + 4c2)) ,

and so

0 = a2 - 4bc + 4(2αc + δ2 + 4c2) ,

(14) + 1 = 2αc + 62 + 4c2 - 2(2αδ + 86c - 2c2) ,

= 2αδ + 8δc - 2c2 - 2(α2 - 4δc) - 8(2αc + δ2 + 4c2) .

Clearly a is even and so + 1 must be + 1 . Then

1 = α(2c - 46) + δ2 - 16δc + 8c2,

0 = (α + 4c)2 + 46(6 - c) .

Suppose first that c = 26 and so δ2 = 1. Since solutions (α, 6, c)f.
(—α, —6, — c) give the same value for X, we need only take 6 = 1,
c == 2, and then (a + 8)2 - 4 = 0 and so a = - 6 , -10. Then 6 = 1,
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c = 2, α = —6 gives X = 4.
Also 6 = 1, c = 2, α = —10 gives from (14), Xx = 12. Suppose next

that c ^ 26. Then

and

-1 \ 2

~ * ), )
46 — 2c /

- c) = 0 .

Since 6|(δ2 - 1), 6 = ± 1 , c = ± 1 , α = + 4 . Then from (14), Z = 2.
All the solutions (4) have now been obtained.

We take next I = 1, m — 0 and so

± ( X - θ) = (0 - 02) (α2 - 46c + θ(2ab + 86c - 2c2)

+ #2(2αc + 62 + 4c2)) .

Then

0 = 2αδ + 8δc - 2c2 - a2 + 4bc - 4(2αc + δ2 + 4c2) ,

+ 1 = a2 - Abe + 6(2αc + δ2 + 4c2) - 4(2αδ + 8δc - 2c2) .

The first equation shows that a is even and the second that a is odd;
and so no solutions arise.

Suppose finally that I = m — 1, so that (11) can be written as say,.

±(X -θ) = 0(1 - θ) (1 - 2Θ)F2.

On multiplying by θ and absorbing θ2 in F2, we can write this as, say

±(XΘ - θ2) = (1 - 30 + 2Θ2) (a2 - Abe + θ(2ab]+ 8δc - 2c2)

+ 02(2αc + δ2 + 4c2)) .

Hence

0 = a2 - 4δc + 6(2αc + δ2 + 4c2) - 4(2αδ + 8δc - 2c2) .

- 9(2αc + δ2 + 4c2) - 3(2αδ + 8δc - 2c2) + 2(α2 - 4δc) .

The first equation shows that a is even and then that 6 is even since
6δ2 = 0 (mod 4). The second equation shows that 6 is odd. Hence no-
solutions arise.

This finishes the proof.
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