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SOME REMARKS ON FITTING'S INVARIANTS

K. R. MOUNT

In the paper [2] Fitting introduced a sequence of ideals associated
with a finitely generated module M over a commutative ring as follows:
if (E) 0—>K—>F-+M—>0 is an exact sequence with F a free module
on a basis e(l), , e(n) and if k(i) — Σx(ij)e(j), i in some index set,
generates K then the ith ideal f(j; M) is generated by the
{n — j)x(n — j) determinants of the form (x(uv)). These ideals are
independent of the sequence (E) and have the following properties:

(i) if h is a homomorphism from a ring R to a ring S and if M
is a finitely generated R module then S-h(f(j: M))) = f(j; S® Λ M),

(ii) denoting by ann(M) the annihilator of M we have /(0: M) S
ann(M) and for sufficiently large m, [ann{M)\m ^ /(0: M). Note also
that /(i; M) S f(j + 1; M) and that for i sufficiently large the ideals
are all (1). In this paper we wish to make some remarks on the
relation between these ideals and the concepts of flat and projective
modules.

In the following we shall denote by F(j; M) the R module R/f(j; M)
and by F(M) the direct sum of the F(j; M). We remark that the
module F(M) is finitely generated and it is free if and only if F(j; M)
is free (or zero) for each j . First note that for a free module N we
have F(s; N) is free for each s and that for any module (finitely
generated) we may write F(M) = R/f(0; M) 0 0 R/f(s; M) 0
where we suppose /(r; M) Φ (1). If F(j; M) is not free for some j < r
then f(r; M) Φ (0) and hence f(r - 1: F{M)) = f(r; M) is neither (0)
nor R.

THEOREM 1. If M is a finitely generated module over a local ring
R (not necessarily noetherian) then M is free if and only if F(M) if
free. If M is free and if I is the maximal ideal of R then

dimRII(RII®R M) = rank (F{M)) = rank (M) .

Proof. If M is free then F(M) = Σx F(x; M) = Σx<n R if M has
rank n. Assume F(M) is free and that 0-+ K-+ F—> M—>0 is exact
with F free over R. We may suppose that rank (F) = dimΛ//(22//®Λ M)
by the Nakayama lemma. Suppose, therefore, that K Φ (0). Then
F(r - 1; JkΓ), if the rank of F is r, has the form ArF/i(K) A Ar~xF
where i is the inclusion map of K into F and ArF denotes the
homogeneous component of degree r in the Grassmann algebra of F.
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We have that if F(r — 1; M) is not zero then it is not free. If
F(r - 1; M) = (0) then 0 - R/I®R F(r - 1; M) = F(r - 1; J?//®β ikf)
thus F(r — 1; R/I(S>B M) = (0) and therefore the dimension of R/I(^R M
is less that or equal to r — 1 which contradicts the choice of F.

REMARK. Villameyor has proved that a finitely generated R module
ikf is flat if and only if M is locally free, i.e. if and only if for each
prime I the module Rτ ® M is free, the tensor product taken over the
homomorphism of R into RΣ. This result is unpublished. By [1] it
suffices to show that a finitely generated flat module over a local ring
is free. One checks easily that a cyclic module is flat if and only if
for a generator m (fixed) and for a collection ai9 so that a{m = 0 and
which span the relations of M, that for each i there are elements.
bj(ί) of M with Σ/yj(i)b(i) and afi^i) — 0 for each j . If M is flat then
by the Nakayama lemma there is an exact sequence 0—*K —> F—> M—>0
with F free, IK = K, I the maximal ideal of R. If F is free on r
elements /(I), ,/0") with images m(i) in Jlίwe need only show that
the module 0 Φ Ar M = ArF/ί(K) A Ar~1F is free. Applying the criterion
of [1] to a cyclic module it follows that a flat cyclic module is free
thus we need only show that ΛrM is flat. A basis for the relations
of ArM is given by the elements x(i)f(l) Λ ••• Λ/(r) where Σi(i)f(i)
runs over all the relations of M, i.e. over the image of K in F. If
M is flat then given a relation Σx(i)f(ί) it follows easily from the
criterion of flatness in [1] and an easy computation that there are
elements y(ij) in R such that m(ί) = Σy(ij) m(j) and Σ&ii) y(ij) = 0.
In ArM set δ* = m(l) Λ Λ m(r) and set y* — det (y(ij)). Then.
2/*fr* = 6* and Σx(i) y(ij) — 0 implies x(i)b* — 0.

THEOREM 2. // M is finitely generated then M is flat if and only;
if F(M) is flat if and only if F(j; M) is flat for each j .

Proof. If F(M) is flat the module F{RΣ (g) M) is free for each
prime I of R and RΣ ® M is free by the previous theorem which implies-
that M is flat. Conversely, if M is flat then RΣ <g) F(M) = F(RZ ® M)
is free which implies .F(Λf) is flat. By the remarks preceding the
first theorem F(M) is free if and only if F(j; M) is free for each j
which proves the last assertion.

LEMMA 1. If M is a finitely generated R module then M is-
projective if and only if it is the covariant extension of a protective
module over a noetherian ring.

Proof. Suppose 0-+ K-+ F-^>M—>0 is exact with F free on a.
basis /(&), 1 S k ^ n and assume that M is projective. Since K is a
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direct summand of F it is generated by finitely many elements
k(l), , k(ri). Let b denote a homomorphism from M to jFsuch that
άb = Identity and set k(i) = Σx(ij)f(j). Set b{a{f(ϊ))) = Σάy(ij)f(j)
and denote by i?* the subring of R generated by 1 and the elements
x(ij) and y(uv). Denote by M* the module a(R* f(l) + + R* f(n)).
If we set F* = iϋ*/(l) + ••• + R*f(n) we have an exact sequence
0 -> K Π F* -> F* — ikf * -> 0. Since the #(#) are in i2* the restriction
of b to ilf * splits this sequence which implies that M* is projective.
If we denote by c the inclusion map of R* into R we have an exact
sequence 0-> R®C{K C\ F*)-^ R®CF* -> R(&CM* -> 0. We may iden-
tify R ® c F* with F by the obvious isomorphism and under this map
R(g)c {K Π .f1*) maps onto K since Λ(i) is in K f] F* for each i. There-
fore, i2(g)cM* = Λf.

LEMMA 2. / / 0 —> M' -> Λf — Λf " -> 0 is eίmctf wΐίλ M, M" finitely

generated and M" flat then F(M) = F(M") implies Mf = 0.

Proof. Suppose I is a maximal prime of R and set /* = RΣ I,
k = RjlΓ. The sequence 0 -+ Rz (g) ΛΓ -> iϊ, ® M-> Rz ® Λf;/ -> 0 is
•exact. For JSΓ = M', Λf, Λf" set Rj®N= N, and note that ^(M,) =
F(Mj). Further M/ is free and hence Mτ = Mi' + Λf/. We have
that k (g) MΓ is a direct sum of MϊjΓMί' and M[\ΓM[ and k^FiMj) =
k <g) ̂ (AΓzO implies that dim, ft <g) Λf/ = dim, (Mil Γ Mi) thus Mil I* Mi =
-0. Since M/ is a direct summand of a finitely generated module it is
finitely generated and thus ikf/ = 0 whence ikF = 0.

THEOREM 3. If M is a finitely generated module then M is
projective if and only if F(M) is projective.

Proof. Suppose F(M) is projective with 0—>iΓ—*F-+M—>0 exact
.and F free on /(I), « ,/(m). Since F(ikf) is projective so is each
F(j; M) and thus we have R — f(j; M) + A(j) as an R module, hence
1 = r(j)b(j) + s(j)a(j) where Rb(j) = f(j; M) and A{j)^Ra{j) = F{j; M).
We have there are elements k(j, w v) in the image of K with v an
integer and w a sequence of length j so that if f(w) denotes the multi-
vector f(w(l)) Λ Λ /(w(i)), (5) 2^ k(j, w; 1) Λ Λ ft(i, w; ra - i) Λ
/(w) = b(j)f(l) A Λ /(w). Set fc(j, w v) = 0 if 6(i) is zero, and
denote by if* the collection of all such k chosen for 0 ̂  j ^ n. If
Λ(l), , k(n — t) are in K* and if v is a sequence of length t define
«(fc(w); v) by k(u) Λf(v) = c(k(u); v)b(t)f(l) A Λf(n), u = (1, , % - ί)
and set &(i, w; v) = Σrx(j, w; vr)f(r). Denote by i2* the subring of
R generated by 1, c(k(u), v), x(j, w; vr), b(j), r(i), s(i) and a(i) and set
F * = R*f(l) + + R*f(n), if* = (K*) and define M* by the exact
sequence (S) 0 — K* — .P* -> ikΓ* — 0. We have /(i; ilf *) £R* b(j) by
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the definition of K* and f(j; ikf *) ^ R* b{j) by (B). Since 1 = r(j)
Ho) + s(i) «(i) and /(;/; ikf) Π A(i) = (0) we have f(j; M*) is jβ* projective
and thus M* is projective as a flat module over a noetherian ring.
The sequence (S) tensored with R considered as an R* module is exact
and identifying JK® F* with F under the map fc(Jr(ΐ) (g)/(i)) = Σr(i)f(i)
we have that h(R(g)i*(K*)) ^ ΐ (^), where i and i* are the inclusion
maps of K and JKΓ* into F and .F* respectively. Therefore, there is.
an exact sequence 0 -> M" -> R ® M* -> ikί-> 0 with jf(r; JK (g) M*) =
JB/(i; Af*) = / ( j ; M) thus M" = (0) since Mis flat (F(M) is flat) hence
M is projective. Conversely, if M is projective it is the covariant
extension of a projective module over a noetherian ring, thus so also
is F(M) hence F(M) is projective.

COROLLARY 3.1. Every finitely generated flat module over a ring
R is projective if and only if every flat cyclic module is projective.

LEMMA 3. For la prime in a ring R denote by n(I) the collection
of all x in R so that yx = 0 for some y not in I. If

(0) = Q(i) n Q(t) n n Q(s)

where Q(i) is primary with radical p(i) and Q(i) S I if and only if
i ^ t then n(I) = Q(l) n Π Q(t).

LEMMA 4. If Rja is a flat R module with a an ideal in R then
( i ) a — R if a contains an element which is not a zero divisor
(ii) for any prime I< R if IΦ R and I^a then n{I) ^ a.
(iii) if b is an ideal in R and θ: R —•> Rjb = J?*, θ the natural map

then the module ϋ!*/α* is R* flat with α* = θ(a).
(iv) for any prime I > α, l = e + n where e is in a and n is in n(I)

Proof. We have that RΣa = (0) or (1) for each prime of R. If
a contains an x which is not a zero divisor then R& = (1) for each
/, thus a — (1). For (ii) note that if / ^ a then RΣa φ (1) and thus.
RLa = (0) or a ^ n(I). To prove (iii) we need only show that for any
maximal ideal /* < i2* either Rpi* = (0) or R**a* = (1). If /* > α*
then there is an a? in α* with x not in /*. Thus x is not in w(J*>
hence R^a* = (1). If J* ^ α* then M = θ~\J*) is maximal and
contains α, thus ^(ikf) ^ α and hence n(J*) ^ (9(tι(M)) ̂  α*, therefore
R$*a* — (0). Turning to (iv) assume / < α with / a prime. Set R* =
R/n(I), a* — θ(a) with θ the natural map from R to i2* and assume
α* Φ (1). Note that α* =̂ (0) since I ^ ^(/). One checks easily that
n(Γ) = (0) where /* = 0(1). We have, therefore, that Rf.a* = (1) and
thus there is an x* in α* and a y* not in J* with a?*/y* = (1). Since
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α* Φ (1) we have by (i) that there is an element z* in i2* such that
0 = z*x*, z* Ψ 0. Since n(Γ) = (0) we have that z* = z* x*/y* = 0
which is a contradiction, thus α* = (1).

COROLLARY 3.2. // (0) = Q(ΐ) Π Π Q(s) where Q(i) is primary
with radical p{i) then every finitely generated fiat module is protective.

Proof. Since it suffices to prove the assertion for cyclic modules
suppose R\a is flat with p(i) ^ a for 0 ^ i ^ t (0 if no p(i) contains α).
Clearly n(p(i)) ^ Q(i) and since n(p(i)) ^ a if p(i) ^ α it follows that
a ^ Q(l) Π Π Q(t) (if ί = 0 this intersection is defined to be R). If
V(j) ^ α then by the previous Lemma 1 = e(j) + w(i) where e(j) is
in α and n(j) is in n{p{j)). We may set 1 = e + n with e in a and
w in Q(ί + 1) Π Π Q(s) by taking the product of the elements
(e(j) + n(j)) from ί + 1 to s, thus i?/α is a direct summand.
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