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CONCERNING HOMOGENEITY IN TOTALLY
ORDERED, CONNECTED TOPOLOGICAL SPACE

L. B. TREYBIG

Throughout this paper suppose that L denotes a connected, totally
ordered topological space in which there is no first or last point, and
whose topology is that induced by the order.

A topological space S is said to be homogeneous provided it is
true that if (x, y)e S x S, there is a homeomorphism / from S onto
S such that f(x) = y. Let H denote the set of all homeomorphisms
from L onto L, and let / denote the set of all homeomorphisms which
map a closed interval of L onto a closed interval of L. Let H0(I0)
denote the set of all elements of H{I) which preserve order.

THEOREM 1. If L is homogeneous, then L satisfies the first axiom
of countability.

Proof. It suffices to show that for some point z of L there exists
an increasing sequence xl9 x2, and a decreasing sequence y19 y2,
such that each of these sequences converges to z. Suppose there is
no such point. Let Pl9 P2, denote an increasing sequence which
converges to a point P and Ql9 Q29 a decreasing sequence which
converges to a point Q. There is an element g in H such that
g(P) = Q, In view of the preceding supposition, g is order reversing.
There is a point R such that g{R) = R, and R is the limit of a se-
quence Rl9 i?2, which is either increasing or decreasing. Suppose
the sequence is decreasing. The sequence g{Rx), g(R2), is increasing
and converges to R. This yields a contradiction. The case where
Rl9 R29 is increasing is similar.

THEOREM 2. The space L is homogeneous if and only if each
pair of closed subintervals of L are topologicaly equivalent.

Proof. Part 1. Suppose each pair of closed subintervals of L
are topologically equivalent and (a?, y)e L x L. There exist elements
z and w of L such that z < x < w and z < y < wy and an element g
of I from [z, x] onto [z9 y\. If g is order reversing there is an element
gf of Io from [z, x] onto [zy y\ which may be constructed as follows:
Let t denote the point of [z9 x] such that g(t) = t. gr is defined by
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gf(u) = {gg(u), t < u 1 1 } I n a n y e v e n t ' l e t gf a n d h' d e n o t e ele"
ments of Jo which map [z, x] and [x, w], respectively, onto [z, y] and
[y, w], respectively. The function / defined by

f(n) =
< z or u > w

z < u < x
h'(u) , x < u ^ w

is an element of Ho such that /fa) = y.

Part 2. Suppose L is homogeneous.

LEMMA 1. If (x,y)eL x L, there is an element f of Ho such
that /fa) = y. Furthermore, if fel there is an element g of Jo

having the same domain and range, respectively, as f.

Proof. Suppose g e H and g{x) = y, but g is not in Ho. There
is a point b such that b = #(δ) and an element h oί H such that
Λ(#) = ό. The function / = gh~λg~xh is in Ho and /fa) = y. The proof
of the second part of Lemma 1 follows easily from the first part and
the proof of Part 1 of Theorem 2.

LEMMA 2. Suppose [a, b] is a closed interval and f and g are
elements of Io defined on [a, b] such that f (a) = #(α) (/(&) = g(b)),
but that f{x) < gix) for a < x ^ b (α ^ x < b). If /(α) < x0 < fib)
iΰiά) < ô < θib)) and xlf x2, is a sequence such that xn = fg~\xn-ύ
fau = fl/^fan-i)) for n ^ 1, then xOf x19 x2, - — is a decreasing iin-
creasing) sequence which converges to /(α) (/(6)).

Proof of first part. The inequality a < g~\xQ) < /^fao) < b im-
plies that /(α) < xx — fg~\x0) < x0 < fib). Suppose it has been es-
tablished that /(α) < xn < xn-λ < fib). The preceding implies that
a < g~\xn) < /"^fa ) < b, which implies that /(α) < xn+1 =: fg-\χn) <
#n < /(&)• Therefore, α?0, ̂ i, a?2> is a decreasing sequence bounded
below by fid), and thus converges to a point x ^ /(α). Suppose
α? > fia). Since gf~\x) > x, there is a positive integer n such that
gf~\x) > xn > x, which implies that x > fg~\xn) = a?»+i This yields
a contradiction, so α? = /(^).

LEMMA 3. If ce L there exist an interval [a, b] and elements f
and g of Jo with domain [a, b] such that fia) = gia) — c and fix) < gix),
for a < x ^ b; or if ce L there exists an interval [a, b] and elements
f and g of Io with domain [a, b] such that fib) — g(b) — c and fix) < gix),
for a S w < b.
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Proof. Suppose that for each element (x, y) of L x L there is
a unique element / of Ho such that fix) = y. Let ul9 u29 denote
an increasing sequence converging to a point u, and for each n, let
fn denote the element of Ho such that fn(u) — un. If α? is an element
of L and n a positive integer, then fn(x) < fn+1(x) < x; for if this is
not the case, the graph of /„ intersects the graph of fn+1, or the
graph of fn+1 intersects the graph of the identity homeomorphism,
and in either event there is a contradiction to the unique homeo-
morphism hypothesis. If for some x, the sequence fχ(x), /2(#), con-
verges to a point y < x9 the element g of Ho such that g(x) — y has
the property that its graph either intersects the graph of the
identity function or the graph of fn9 for some n. Therefore, for any
x in L9 the sequence f1(x)9 f2(x)9 is increasing and converges to x.

For each positive integer j9 let ajl9 aj29 and bjl9 bj2, denote
sequences such that (1) a5l — fr\u) and bjτ — fj(u), and (2) ajn =
fi\a>Ln-ι) and bjn = /,-(&,, «-i), for n > 1. Suppose u < x and (r, s) is
an open interval containing x. Let n denote an integer such that
f < /»(«) and x < /»(«). Since u < x < fn(s)9 it follows that anl =
fή\u) < 8. If anl is not in (r, s), let K denote the set of all anj such
that anj < x and let z = l.u.b. iΓ. If 2 ̂  r, there is an element anj

of if such that fn(z) < anj g z < /Λ(a?), which implies that 2 < fΰ^nj) =
αΛ,i+i < », which is a contradiction. In any event, some anj is an
element of (r, s). The preceding argument clearly indicates that
Σ (aij + δtf) is a countable set dense in L, so L is a real line and
the unique homeomorphism hypothesis is contradicted.

There exist elements h and k of Ho and points s and £ of L such
that &(s) = k(s)9 but &(£) < fc(ί). Suppose s < t. Let a denote the
largest element x of L such that /&(#) = k(x) and α? < ί. There is an
element p of Io with domain [Λ(α), k(t)] such that p(Λ(α)) = c. The
functions / = pih) and # = p(&) and the interval [α, ί] satisfy the
first conclusion of the lemma. The case t < s yields the second con-
clusion.

LEMMA 4. Suppose [α, 6] is α closed interval and c is a point.
If x > c9 there is a point y in (c, x) and an element f of /0 mapping
[α, b] onto [c9 y].

Proof. Let U denote the set of all x > c such that there is a
homeomorphism from [α, b] onto [c, x]9 and let F denote the set of
all x < c such that there is a homeomorphism from [α, δ] onto [x, c].
The sets U and F exist because of the existence of elements hx and
h2 of Ho such that fc^α) = c and A2(6) = c. Let u = g.l.b. U9 v —
l.u.b. F and suppose that e < ̂ .
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Case 1. Suppose the first conclusion of Lemma 3 holds There
exists a point ulf an interval [p, q\, and elements / and g of 70 having
domain [p, q\, and such that (1) c < ux < u, (2) f(p) = #(p) = ^ , and
(3) f(x) < g{x), for p<x^q. There is a point r such that p<r <q,
g(r) < u, and #(r) < f(q), and an element fc of 70 having domain [p, q]
such that (1) k{r) = u, and (2) k(x) ^ g(x) for α? 6 [p, q]. The function
Λ defined on [p, q] by h(x) = kg~λf{x) is an element of 70 such that
( 1 ) &(?) > u, (2) &(j>) = fc(p), and (3) h(x) < k(x), for p < x ^ q.
There is a point x0 such that te g xQ < A(g) and an element /„ of 70 map-
ping [α, 6] onto [c, xo]m Let #i, a?a, denote a sequence such that
xn = hk~\xn^ for ^ Ξ> 1, and let / l f /2, denote a sequence of func-
tions defined on [α, b] such that for n ^ 1 (1) /w(a?) = /o(#), for α ^
x ^ /o" 1 ^) , and (2) fn(x) •= hk^f^x), for /rX^) < a ^ 6. For each
n, /„ is a homeomorphism from [a, b] onto [c, a?Λ], but, according to
Lemma 2, a?Λ < ^ for some n. This yields a contradiction, so u = c.

Case 2. If the second conclusion of Lemma 3 holds, then it
follows, by an argument similar to the one in Case 1, that v = c.
Let ux denote a point between c and u, and g an element of Ho such
that g(c) = %!. There is a point u2 such that c < u2< u± and an ele-
ment h of 70 mapping [α, b] onto [fir1^)* c l The function g(h) is an
element of Io mapping [α, δ] onto [u2, uλ]. Let fc denote an element
of Ho such that k(a) = c. Since &(δ) ^ w, there is a point ί such that
k(t) = ί/Λ(ί). The function / defined by

a ^x <

\gh(x), t<x^

is an element of Io which maps [α, b] onto [c, wj, so in this case also,
the assumption c < u leads to a contradiction.

The proof of the main result now follows easily. Suppose [a, b]
and [c, d] are closed intervals and g an element of Ho such that
fif(6) = d.

Case 1. #(α) ̂  c. There is a point e such that c < e < c£ and an
element h of Jo mapping [α, 6] onto [c, e]. As in case 2 of Lemma 4,
a homeomorphism from [α, b] onto [c, d] may be constructed from g
and h.

Case 2. #(α) > c. There is a point e such that α < e < 6 and
an element h of 70 mapping [c, d] onto [α, β]. However, ΛΓ1 is an
element of 70 mapping [α, e] onto [c, d], and a homeomorphism from
[α, 6] onto [c, d] may be easily constructed from g and hr1.

In order to establish the next theorem it is helpful to use a result
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of Richard Arens'. A linear homogeneous continuum (LHC) has been
defined by G. D. Birkhoff as any set of elements which 1. is simply
ordered 2. provides a limit for any monotonely increasing (or decreas-
ing) sequence 3. is isomorphic to every nondegenerate closed sub-
interval of itself. In [1] Arens shows, among other results, the
following (reworded by the author).

THEOREM A. If I is an LHC and for each positive integer p,
Ip denotes I, then the space Γ = Iλ x I2 x with the lexicographic
order is also an LHC.

THEOREM 3. // L is homogeneous, [a, b] is a closed interval, and
for each positive integer p, Iv denotes [α, 6], then the space x =
L x Iλ x I2 x with the topology induced by the lexicographic order
is also homogeneous.

Proof. Let [ul9 u29 vl9 v29 1 and [xl9 x2, y19 y29 | denote
closed subintervals of X. Let u and v denote elements of L such
that u < min {uif x{} and v > max {viy y^ for i = 1, 2, 3, , and let g
denote an element of 70 which maps [u, v] onto [a, b]. The function
F defined by F(t0, tl912, •) — [g(to)f t1912, •] is an order preserving
homeomorphism from [u, v] x Iγ x I2 x onto [a, b] x Iλ x I2 x .
Theorem A shows that any two subintervals of the latter are homeo-
morphic, so it follows that [xl9 x29 yl9 y29 ] and [ul9 u29 v19 v29 |
are homeomorphic. Therefore, by theorem 2, X is homogeneous.

Suppose Ll9 L2f L3, denotes a sequence of spaces such that (1)
Lλ is the real line, and (2) for each n9 Ln+ι is constructed from Ln

by a Theorem 3 type construction. The main theorem of Arens' paper
[2] yields the result that if i Φ j , then L{ is not homeomorphic to Lj9

Is it true that if a homogeneous space U satisfies the axioms stated
on the first page and also has the property that it can be covered by
a countable collection of closed intervals, then U is one of the spaces
L19 L29 Z/3, ?

In part 2 of Theorem 2 the construction indicated gives an order
preserving homeomorphism from [α, b] onto [c, d]. This leads naturally
to the following question: If U satisfies the axioms of L, is homo-
geneous, and [a, b] is a closed subinterval of I/, then is there an
order reversing homeomorphism from [α, b] onto [α, b] ?
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