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JL Introduction* Let X be a compact Hausdorff space and C(X)
the algebra of all complex-valued continuous functions on X. We
consider a closed subalgebra A of C(X) which separates the points of
X and contains the constants. We call A "a function algebra on X".

Let Re A denote the class of functions u real and continuous on
X such that for some / in A, u = Ref. Then Re A is a real vector
space of real continuous functions on X. What more can be said
about ReAΊ

In [3] it was shown that Re A cannot be closed under uniform
convergence on X unless A = C(X). Here we shall show that Re A
cannot be closed under multiplication unless A = C{X). In other words:

Theorem 1: // Re A is α ring, then A = C(X).

This result was conjectured by K. Hoffman. As a corollary one
gets the existence of a continuous function u on the unit circle having
the following property: u has a continuous conjugate function (in the
sense of Fourier theory) whereas u2 does not. For we may take for
A the algebra of continuous functions on the circle which extend
analytically to the unit disk. Then Re A is the class of all functions
which are continuous and have continuous conjugates. But A Φ C(X).
Hence by Theorem 1, Re A is not a ring, hence not closed under squaring,
and so the desired u exists.

The existence of such a u had been shown in 1961 by J. P. Kahane
(unpublished). It should be noted that if a function u is sufficiently
smooth to have an absolutely convergent Fourier series, then u2 does
also, and hence u2 does have a continuous conjugate.

2. The antisymmetric case. In this section we assume that A is
anti-symmetric, i.e. contains no real functions except constants, and
prove Theorem 1 under this hypothesis. This amounts to proving:

THEOREM 1'. Let A be anti-symmetric and let Re A form a ring.
Then X consists of a single point.

Assume X contains a point x0 and another point xlm We must
deduce a contradiction. Fix u in Re A. Then (because of antisymmetry),
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there exists exactly one f in A with u = Ref and Imf(x0) = 0. The
map: u into / is now a real-linear map of Re A into A which is one-
to-one. We can then norm Re A by the norm N:

ΛΓM = max I/I = | | / | | .
X

In this norm Re A is then evidently a real Banach space. By standard
application of the closed graph theorem, we have

LEMMA 1. There exists a constant K such that for all u, ur in
Re A

N(u - O g K'N(u) N(u') .

LEMMA 2. // p lies in Re A and p > 0 on X, then log p is in
Re A.

Proof. Let S be the class of functions u + in' with u and u'
in Re A. Then S is an algebra of complex-valued functions on X
containing A as a subalgebra and closed under complex conjugation.
Define N(u + in') = N(u) + N(u') and | |/|Γ = sup,iV(βίβ/) for all / in
S. Then S is a (complex) Banach space under || ||' as norm and also
| | / #IΓ ^ JBL||/||' Hflf IΓ Hence S is a Banach algebra under a norm
equivalent to || ||'.

Let Ms denote the space of homomorphisms of S into the complex
numbers and MA be the corresponding space for A. Fix m in M8.

Restricted to A, m is an element σ of MA. Also the map: / into m(/),
restricted to A, is an element τ of MA. Since p lies in Re A, we can
find some r in A such that

p = JL (r + r) whence m(p) = — (m(r) + m{f)) ,

or

(σ(r) + φό

By hypothesis, Re r — p > 0 on X. Hence by a well-known property
of function algebras, Re β(r) > 0 for all β in MA. In particular
Re σ(r) > 0 and Re τ(r) > 0. Hence Re m(p) > 0.

Since this holds for all m in Ms> we can, by the general theory
of Banach algebras, apply to p any function analytic in the right
half-plane and still stay in the algebra S. Hence log p is an element
of S, and, being real valued, of Re A.

Let now K* be any positive number. Choose g in A with g(x0) — 0
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and II0H = 1. Let a be some point in X where \g(a)\ — 1. Next
choose ψ analytic in | z \ < 1, continuous in | z | ^ 1, such that 0 < Re ψ ^
1 in I z I ^ 1, Im φ(0) = 0 and Im φ(g(a)) ^ K*. Put / = φ(g). Then
/ belongs to A and we have:

0 < Ref ^ l o n l , Imf(x0) = 0 a n d \\f\\ ̂  K* .

Then Ref is in JSβ A and >0. By Lemma 2, then, log (Ref) also
is in Re A, i.e. there is some F in A with Re F'= log(i?e/). Put
now F = exp(iF). Then again F is in A. Also | V\2 = JSβ/. Then
max. I F | = || F | | ^ 1.

We now use the following identity, true for each complex z:

Applying this to V and using that \V\2 — Ref, we get

(Re VY = Re(λ ( F 2 + /)) .

Clearly for each h in A, we have JV(iue h) ^ \\h\\ — \Im h(x0) |. Hence
^((Λβ VY) ^ 4(11 F 2 +/H - I /m F2(^0) |) ^ 4<JKΓ* - 2), since | | / | | ^ i ί*
while || F2 |( ^ 1.

On the other hand, by Lemma 1,

N((Re F)2) ^ if- (iV(i2β F))2 and N((Re V)) ^ 2 || F | | ^ 2 .

Since iΓ* is arbitrary while K is fixed, we have a contradiction.
Thus Theorem 1' is proved.

3 The general case* To deduce the result in the general case
from Theorem 1', we use the following theorem of Bishop [1]. (See
also [2].):

THEOREM. Let A be any function algebra on X. Then there
exists a collection Φ of closed, pairwise disjoint sets covering X so
that

(a) / in C(X) and f\ Kin A\ Kfor every K in Φ imply f in A;
(b) A I K is closed in C(K) for each K in Φ.
(c) AI K is antisymmetric on K for each K in Φ.
Because of Bishop's theorem, one has the following method of

reasoning: let (P) be a property which has meaning for every function
algebra A. Assume

(i) Whenever a given A has property (P), then so does each
restriction algebra A | K for K in Φ, and

(ii) Whenever A is antisymmetric on the space X and A has
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property (P), then X consists of a single point.
We then conclude, using the Theorem, that if A is a function

algebra on a space X such that A has property (P), then A — C(X).
Thus, if (P) is the property "A is closed under complex conjugation",
(i) and (ii) clearly hold, and one concludes the Stone-Weierstrass theorem.

If (P) is the property "Re A is a ring", then (i) also clearly holds,
and that (ii) holds was the content of Theorem Γ. Thus we may
conclude Theorem 1.
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