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ORTHOGONAL DEVELOPMENTS OF FUNCTIONALS AND
RELATED THEOREMS IN THE WIENER SPACE OF

FUNCTIONS OF TWO VARIABLES1

J. YEH

1Φ Introduction* Let Cw be the Wiener space of functions of
two variables, i.e. the collection of real valued continuous functions
f(x, y) defined on Q: 0 S x, y ^ 1 and satisfying /(0, y) = f(x, 0) = 0.
Let F[f] be a complex valued functional defined almost everywhere
on Cw and having Wiener measurable1 real and imaginary parts, and
let L2(CW) be the Hubert space of functional F[f] satisfying

F[f]\*dwf<<»

with the inner product

(Fl9 F2) = \ FUWSΆ^f

The contents of this paper are:
1. An extension of the Cameron-Martin translation theorem,

Theorem III, [11].
2. An extension of the Paley-Wiener theorem to Cw. Our proof

is different from that of Paley and Wiener given for the Wiener space
of functions of one variable and is based on the extended Cameron-
Martin translation theorem, and

3. Construction of complete orthonormal systems in L2(CW).

2 THEOREM P. Let p(x, y) be of bounded variation* on Q, p(0, y),
Pθ-9 V)f P(x> 0), p(x, 1) be of bounded variation on the respective unit
interval. Let p(x, y) be continuous a.e. and bounded on Q. Let

(2.1) q(x, y) = I p(s, t)ds dt where Qxy = [0, x] x [0, y\ ,
JQxy

0 g x, y ^ 1 .

Let Γ cCw be Wiener measurable and a translation T be defined by
Received January 29, 1963. This research was partially supported by the Mathematics

Division of the Air Force Office of Scientific Research under Contract No. AF 49 (638)-
1046. The author is indebted to [2] in the writing of this article.

1 For the definition of the Wiener measure and Wiener measurable functionals, see
[10] or [11].

2 Theorem 1 can also be derived from Theorem 3, [9].
3 For functions of bounded variation in n variables and Riemann-Stieltjes integrals

with respect to them, see [11].
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1428 J. YEH

(2.2) TΓ = {feCw;f=g-q,geΓ}.

Then

(2.3) m(Γ) = exp {- ( p'dxdy^i^ exp {~2ί pd*f}dwf

and if F[g] is a real valued measurable functional defined on Γ,

(2.4) \F[g]dwg - exp { - {p*dxdy}^F\f + q]

The proof of this theorem for the most part consists in justification
for passing to the limit under the various integral signs involved and
is lengthy and we shall only give an outline in the following leaving
the details to the reader.

The linearization Lv of a function p(x, y) defined on Q correspond-
ing to a partition 5β of Q: 0 = xo<Xι< <xm = 1, 0 = yo<Vi< <Vn = 1
is the continuous function defined on Q which agrees with p(x9 y) at
(x*t Vj)t i = 0,1, 2, , m; j = 0,1, 2, , n and is linear on each of the
2mn closed rectangular triangles having either (Xi-l9 Vj-t), («», Vj-i)9

(xif yά) or («<_!, y^x), (x^l9 ys), (xi9 yά) as corners.
The following theorem can be proved more or less in the same

way Helly's 2nd theorem is proved.

THEOREM. Let p(x, y) e B. V.(Q) and let {^k} be a sequence of
partitions of Q such that

1° l imΣΣI P(xlk), Vΐ]) - V(x?\ Vΐ\) - P(xΆ, Vΐ]) + P(XΆ, Vΐ\) I - 0
fc-»oo i j

2° each ^k is a refinement of its predecessor and Km \?βk \ = 0
k

where | Sβ* | = max^ j{\Xi — Xi-λ |, \yj — y^ |}, and let {Lkp} be the
sequence of linearizations of p corresponding to {SβJ. Let {fk(xf y)}
be a sequence of continuous functions which converges uniformly to
f(x, y) on Q. Then

lim I fk(x, y)d2Lkp(x, y) = I f(xf y)dzp(x, y) .

Now let

?*(», V) = \ Lkp(s, t)dsdt.
JQxy

Theorem II, [11] holds with qk replacing fQ since qk satisfies the con-
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ditions on /0. Letting k —> co and justifying passing to the limit under
the integral signs by bounded convergence and utilizing our theorem
above, we derive Theorem I the way Theorem III, [11] was derived
from Theorem II, [11].

COROLLARY. // p satisfies the conditions of Theorem 7, then for
every complex number λ

(2.5) ^ exp {λ.j pd3/}dwf - exp {—{/

Proof. Let a translation T be defined by (2.2). Then TCW = Cw

Since m(Cw) = 1, (2.3) reduces to

(2.6) 1 = exp {-\/dxdv}\0

 e χ P

Let λ be a real number. If we replace p by — (λ/2)p which satisfies
the conditions on p, (2.6) becomes (2.5), and (2.5) holds for real λ.

Now let λ e C, the complex plane. The right hand side (2.5) is a
holomorphic function on C According to the identity theorem of
holomorphic functions, to prove (2.5) we only have to show that the
left hand is also holomorphic on C. This is done by means of Morera's
theorem.

Let Γ be a smooth contour in C and parametrize it by its arc
length s, 0 S s ^ 1 so that | λ'(s) | = 1. Consider

exp

To apply Fubini's theorem, we show that the iterated integrals of the
absolute values of the real and imaginary parts of the integrand are
finite. Let λ0 be a real number such that | λ | ^ λ0 for λ e Γ . For
any real u, | eλu \ < βλ°w + e~λ°u when Xe Γ and hence

Re exp |λ(β)\pd*f } V(s) j

1IL
- 21 exp j-M- (

I 4 J

which is finite. The same argument goes for the imaginary part.
Thus by Fubini's theorem
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= L
because exp <x\ pd2f\ is holomorphic on C. Thus by Morera's theorem,

the left hand side (2.5) is holomorphic on C and (2.5) holds.

3, THEOREM II. Let {pj(x, y)}, j = 1, 2, , n be an orthonormal
set of functions on Q with each p3- satisfying the condition on p in
Theorem 1. / / Φ(ulf , un) is a complex valued Lebesgue measurable

function on Rn, the functional

(3.1) F[f] =

is Wiener measurable on Cw and

(3.2) ( F[f]dwf

Σ dun

in the sense that the existence of one side implies that of the other
together with the equality.

REMARK. Let — co<a<β<co and let k be so large that
a + (1/fc) < β. Let Φaβk(u) be the trapezoidal function defined by

"0 u ^ a

k(u — a)

(3.3)
1

— k{u

0

a ^

a +

β£

u <i a

1 < t

k =

u ^ β

, 1r — I —

02.

VII

, , 1

Then

(3.4) Φmβk(u) - — S
2ττ J —

This follows immediately from the following result in the calculus of
residues:
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eiωz

dz =
~-2πa a^O

0 a < 0

where the left hand side stands for the limit as R} co, § J 0 of the
integral of the same integrand along ΓR δ on the 2-plane defined by

ΓR δ - {z I d ^ I x I ̂  R, y = 0} U {* I IsI = δ, 2/ ^ 0} .

Proof of Theorem II. (1) Consider the Lebesgue measurable
function defined on i?w.

(3.5) Φ(ul9 , un) =• exp j i Σ ^ j , λ, , real

and the corresponding functional defined by (3.1)

To show that F[f] is Wiener measurable on Cw it suffices to show

that \ Pjd2f is for each j . Now since \ Pjd2f exists for all / e Cw,
JQ JQ

let us choose independently of / a sequence of partitions {$k} of Q
with lim^oo | Sβ* I = 0. For definiteness we may also agree to choose
(ξϊk\ Vf), i = 1, 2, , m(Jc), j = 1, 2, , w(A ) in the Riemann-Stieltjes
sum to be always (α?|&), 2/Jfc>).

Since Σ?=AiPi satisfies the condition on p of the Corollary of
Theorem I, §2, we have, by the orthonormality of

\ F[f]dwf=\ t
j =i

Σ

On the other hand

•••'VJeχP{-

(n)\ exp \i Σ^JUΛ e χ P \ — Σ

= π~n/2 Π \ exp {ίXjUj — ufyduj

H-—H L
^ Σ

Thus both sides of (3.2) exist and (3.2) holds.
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(2) Let Φ(ulf * ,un) be the characteristic function Xi{uly , un)
of an interval I in Rnf i.e. let

I = j t x . . . x In with Jy = {% e Λi — oo ^ a,- < % <: /3y <Ξ co},

i = 1,2, « , Λ .

Consider the case where I is bounded, i.e. - c o ^ ah βs ^ co, j =
1, 2, , w. Now

0(^i, , w ) = Z/( î, , nn) = Π

with Φ(tty) = χ,/wy), i = 1, 2, , n .

Let Φj,k(Uj) = ΦctjβjΛuj) as defined in Remark and let

The functionals are Wiener measurable. Now by Remark

Fk[f]dwf = \ Π Φjί\ Pjd'f]daf
n Jθw ί=i LJβ J

= ( T^ΓΓΓΓ (»)Γ e χ P ί* Σ fit Pi*/} Π WWOiWΌi dvΛ

where

( n) Λ — I p v n / nfy ./ii Λ J_ p v η J 4 I Π -1— l/jj . L

v if I CΛ. LI I t'W, Λ Co f ^ ^ C Λ M i v I vv ? ^ ^ • J t/ \' f

v) L I V & / JJ
- exp | -

Now since

exp Π y i f f c (%
V)

so that the repeated integral of the absolute value of the integrand
is finite and Fubini's theorem is applicable. Thus
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Fk[f]daf

n I

• Π Ψi.kMdih duA

where the second equality is from (1). Applying Fubini's theorem
again

Fh\f]dwf=
CW

• I T — \ e x p { i u 5 v s } Ψ 5 t k { v ί ) d v i e x p { — Σ w j \ d u x --- d u n
\-2π J— J I i=i J

= π ~ w / 2 Γ (n)\ Π Φ y fc(^) e x p j - Σ ^}}dwi dun

= τ r - w / 2 Γ (n)( <?*(%!, , uu) e x p j - Σ u2\dux ---dun.

Since i^[/] and (PΛ(^i, •••,%») converge nondecreasingly to J P [ / ] and
0(^i, , un) respectively, both sides of (3.2) exist and (3.2) holds if
we let k —• co in the last equality according to LevFs monotone con-
vergence theorem.

When I is unbounded, we take an increasing sequence of bounded
intervals {/r} which converges to /. Then χIr(ul9 , un)} Xι(ulf , un)

a s r_^ co on Rn and hence χIr[f] ΐ xAf] a s r - > c o on Cw. Thus χτ[f]
is Wiener measurable. For each χIr(ult -- ,un), both sides of (3.2)
•exist and (3.2) holds. By Levi's monotone convergence theorem, the
,same is true of Xι(ulf , un).

(3) To complete the proof of the theorem we show that both
sides of (3.2) exist and are equal when Φ is the characteristic function
of an 0-set, an Oδ-set (i.e. the intersection of countably many 0-sets),
a null set and finally a measurable set in Rn. We then show that
the same is true when Φ is an integrable simple function and when
it is an extended positive valued measurable function defined on Rn.
We conclude by showing that when Φ is an extended real valued or
a complex valued measurable function on Rn the existence of one side
of (3.2) implies that of the other and the equality of the two.

COROLLARY. Let p satisfy the conditions of Theorem L Then
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\\ pd*f\dwf = M

Proof. In case I p2dxdy = 0, p(x, y) = 0 a.e. on Q, 1 pd2/ = 0 for

all f e Cw, and hence \ I pd2f dwf = 0 and the corollary holds

trivially.

Suppose I p2dxdy Φ 0. Let φ(x, y) — (l/λ)p(α?, y) where λ =

\\ p2dxdy> . By Theorem II

OWLJQ J J^LJβ

= λ2 J L Γ u2β-w2(ίu = — = 1- ( p2dxdy .
Vπ J— 2 2 J<2

4. DEFINITION 1. Let {em(u)}, m = 0,1, 2, , be aC.O.N. system
in the separable Hubert space L2( — oo, oo) with

(4.1) βo(w) = 7r-1

and let

(4.2) GJμ) = π1'4 exp {-^}ew(u), m = 0,1, 2,

As immediate consequences of the definition, we have

(4.3) G0(u) EE 1

(4.4) * r - * Γ G»(w)G.(tt) exp {-u*}du = δTOW
j

(4.5) π - ^ Γ G«(«) exp {-•υ?}du = 0 , w = 1, 2, .
J-oo

As an example of Gm(u), let us name the partially normalized.
Hermite polynomials

Gm(u) = (-ly^-^Xm!)- 1 ' 2 exp M - ^ exp {-u2} , m = 0,1, 2, -

DEFINITION 2. Let {j>Λ(aj, i/)} be a C.O.N. system of real valued!
functions in L2(Q) with each pk satisfying the conditions on p in.
Theorem I. Let

(4.6) Φm k[f] = Gm[\Pkd*f\ , for / e Cw
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(4.7) Ψmv ..., mXf] = Φ^Uλ * * &r»rΛf]

Then by (4.3)

(4.8) Φo*[/] = 1

(4.9) T~1,...,»r.o,...o[f] = ^ , . . , 4 / ]

DEFINITION 3. Let {ϊ7**} be the collection of the functional of the
form (4.7), i.e. aeA, which is the collection of sequences of natural
numbers with finitely many nonzero entries.

THEOREM III. The series expansion of any F[f] e L2(CW) in {Ψa}
converges to F[f] in the L2(CW) sense, i.e.

(4.10) lim j Flf] - Σ Amr...,mN¥mv...,mif[f] dwf=0

where Amv...,mir are the Fourier coefficients

(4.11) Ami...mN = \ F[f]Ψmv...,WN[f]dwf .

The proof is based on the following lemmas.

LEMMA 1. {Ψa}, is a O.N. system over Cw.

COROLLARY. The Bessel inequality and the best approximation
theorem hold with {Ψa}.

DEFINITION 5. We say that F[f] e Sn{pk} if F[f] is defined on
Cw and

(4.12) F[f] = φ[\QPid2f, , \Pnd2f\

where

(4.13) Φ{uu - - , O exp {- -i(ttϊ + + <)} e L2(Rn) .

LEMMA 2. Let F[f] e Sn{pk}, then with m, Φ 0,

(4.14) ί F[f]Ψmv...,mr[f]dwf = | ° HrΦn
jOm [Ψmv..mn if r = n

where
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(4.15) φmv...,mn = π~

exp {- Σ ^ } { Σ G ^ i u ^ d u , -- du

LEMMA 3. If F[f] e Sn{pk} for some n, the orthogonal develop-
ment of F[f] in {Ψa} converges in the L2(CW) sense to F[f].

LEMMA 4. Functionals of the type given in Definition 5 are
dense in L2(CW) in the sense of Hilbert metric, i.e. if F[f] e L2(CW),
for every ε > 0 there exists a positive integer I and a functional
F*[f] e St{p>} such that

(4.16) {( I F[f] - F*[f] |2 dwf\
m < ε .

These lemmas are proved by means of Theorem II in the same
way the corresponding lemmas for the Wiener space of functions of
one variable are proved in [4] with relevant modifications made for
the two variable case. We wish to point out that in the proofs in
[4] only those properties of partially normalized Hermite polynomials
that are our (4.2), (4.3), (4.4), (4.5) are utilized.
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