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1. Introduction. It is well known that “generally” (which is to
is the say, usually) a Pfaffian, or 1-form,

a = a,(x)dat + <+ + a,(x)dz"

in R™ has one or the other of the two representations

0
1.1 a = wdu® + - u?du’? + { dur

in an appropriate coordinate system (u', u?, ---, u*). Moreover, the last
index (2p or 2p + 1) appearing in 1.1 is the rank » of the n x (n + 1)

matrix
a, Ay -,
Ay Gyg * v Gy,

1.2 Aor gy v * Dy,

a'nl a'm cee ann ’

in which a;; is an abbreviation for da’/ox’ — da;/0x .

It goes without saying that this is regarded as a local proposition,
indicating that if the rank of 1.2 were constant in some neighborhood
of a point P, then a smaller neighborhood of P, and a curvilinear
coordinate system valid on that neighborhood, could be found yielding
the representation 1.1.

It is very probable that a satisfactory proof concerning the possibility
of reducing a Pfaffian in this way exists in the literature'. Nevertheless,
it should be pointed out that the accepted version is not exactly true
(and this is part of our object in writing this paper.)

Consider the Pfaffian ydx + 2xdy in ordinary R? The Pfaffian
matrix is

y 2
0 —1
1 0

Received June 7. 1963.

1 For references to the older literature, see pp. 324-6 of E. Weber’s article in the
Encyklop. d. Math. Wiss. Band II, Erster Teil, Erste Hilfte (1.I) Teubner (1916). This
article attributes to Frobenius a proof of the sort of proposition stated above, which we
will therefore call the accepted version.
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It has rank 2 everywhere. Indeed, this Pfaffian can be written
yd(xy?) ,

but this does not confirm the accepted version for points at which
¥ = 0. (Actually, as our Theorem 2.1 shows, the representation w dv
is possible at any point different from the origin.) We will now
indicate why there do not exist funections # and v each &~ in a
neighborhood of (0, 0) such that ydx + 2xdy = uwdv. It is evident
that v = f(xy?), whence f(\) = v(\e~% ¢) for some ¢ #+ 0. This shows
that f is &>~ in some neighborhood of 0. From this we obtain
Yy 'd(xy?) = y do + 20dy = uf'(xy*)d(xy?) wherever y #=0, or y'=
u f'(xy®) where ¥ # 0, which shows that y~* is bounded where y # 0—
an absurdity. Thus the accepted version is defective.

The only explanation of this state of affairs is that Pfaff’s problem
problem is, by the authors mentioned in our bibliography at least, not
regarded as an “advanced calculus” type of problem (or theorem.) This
is made explicit by Thomas in his postulational approach; and it is
made evident by the fact that a reading of the first line of his table
on p. 45, shows that w = ydx + 2x dy should have a canonical form
pdq, since 0 #=dw =dx A dy and w A dw = 0, if that theory really
did apply.

Our proof, given below, shows that a sufficient additional assumption
is that the Pfaffian does not vanish at P (and this is already implicitly
assumed when 7 is odd.)

A person might imagine that it would be an easy task to glance
at some rather elementary proof such as the first proof presented by
Gours at in his book, and verify that the denominator of each quotient
formed by Goursat does not vanish at P if the Pfaffian does not. But
this proof is by induction, and it is apparent that if you lop terms
off a Pfaffian you may find at some lower (even) dimension that the
non-vanishing feature has been lost. The exercise of vigilance of this
kind almost doubles the length of Goursat’s proof. On the other hand,
explicit use of Frobenius’ theorem on involutory vector field systems,
enables us to present a proof which is shorter than Goursat’s.

Cartan, in his book (p. 57) sketches a theory of Pfaffian equations,
which is to say that two Pfaffians differing by a factor which is only
a function are regarded as equivalent. It appears that he permits
these functions to have zeros. (Indeed if he did not, then his short
proof on p. 57 would establish the accepted version).

2. The reduction of Pfaffians. The solution of “Pfaff’s Problem”
lies in the following theorem.

2.1 THEOREM. Let o = a,dx’*+ --- + a,dx" be a Praffian with
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& components a, ---,a, defined in the neighborhood of the origin
0 in R", Let
o’ oxt

if

and suppose that the rank of the matrix

2.11

L_anl teet annj

is constant in a meighborhood of 0. Let that constant be r. If ris
even,

2.12 suppose that the a,, ---, a, do not all vanish at 0.
Then there is a coordinate system (u', ---,u") defined in a
netghborhood of 0 tn R™ such that

0 i r=2p

2.13 @ = uwdu® + - + uPdur + )
T du™ if r=2p+ 1.

We observe first some invariance properties of the rank of 2.11.

2.2 Prop. Let P be a point of R* and let cls(d, P) be the class
of a at P, namely the linear dimension of the class of vectors X at
P such that

2.21 la, X> =10
and
2.22 da; X, Y>=0 for all vectors Y at P.

Then cls(a, P) equals the rank of 2.11 at P.

The proof of 2.2 is by simple linear algebra.

Thus ¢ls (a, P) may be calculated as the rank of
b, -+, b, |
bll y "y bln

2.23 : :

. .
bnl’ ] bnn
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where @ = bdy' + -+- + b, dy" in some other coordinate system, and
bi; = (0b:/0y’) — (8b,[8y").
Let aV=a, a®=da, a®=aNda, a®=daNda, a®=aNda, --- etc.

2.24 Prop. (cf.Cartan, p. 58). The class of a at a point P is
the greatest integer r for which a™(P) + 0.

Proof. Suppose P is the origin, which we shall denote by 0. A
theorem of linear algebra [cf. Cartan, p. 12] shows that a coordinate
system (¥, «-+, y") can be found such that da at the origin has the
form dy* A dy* + +++ + dy** A dy*®. In this coordinate system, «
has components b, +--, b,, and

0b;

da = Za—yjdy’ N dyt = —;—Zb“-dyf A dyt .
.3 %7

The n-by-n array of the b;;(0) is thus as follows:

0 -1
1 0

0 -1
1 0

0 -1
1 0

L J

with p such boxes situated on the diagonal (note 2p < n) and zeros
in the unmarked places. This array has rank 2p. Considering the
way in which it enters into 2.23 we see that 2.23 has rank 2p precisely
if g2p11(0), 0545(0), ¢+, b,(0) are 0, and rank 2p + 1 otherwise.

Returning to the form of da at 0, we see that a®(0) =0 for
t > 2p -+ 2. Indeed,

@ (0) = [byp+(0)dy™+ + + -+ + b (0)dy"] A dy* A dy* A -+ dy™” .
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This is 0 or non-0 according to whether b,,.,(0) = --- = b,(0) = 0, or
not. This proves 2.24.

We will now prove 2.2 by induction, assuming it true for each
Pfaffian 8 whose class is less than . We suppose, then, that a =
a;dx’ (using the summation convention in this proof) is of class » in
a neighborhood U of 0, in R".

The constancy of cls («,.) in a neighborhood V of 0 enables one to
find » — 7 vector fields X,,,, -+ X, defined on a neighborhood W of
0 such that at each point P of W, any vector X such that 2.21 and
2.22 hold, is representable in the form

NEX (P) + o0 + M X(P) .

Let stng-sol (a, 0) designate the class of vector fields X representable
in the form

fr+1Xr+1 + e + ann

where f7*, ««-, f* are &= functions on some neighborhood of 0. (We
will stop naming these neighborhoods). The term sing-sol refers to
the fact that these vectors are both solvers of a (2.21) and singular
for d a (2.22), 1t is easy to see that if X and Y are vector fields in
sing-sol (a, 0) then so is [X, Y]. Accordingly, we have here an
involutory distribution so that one may assert [ef. Chevalley, p. 89.
The theorem holds equally well in the &= situation. Incidentally, 2.1
holds equally well in the analytic situation.] that there is a coordinate
system ¥, ---, ¥, in a neighborhood of 0 such that sing-sol («, 0) is
generated by the vector fields

2.25 0o_ 0 .. 0
8?/7‘-%-1 ayT+2 ayn

Let a =b,dy*+ -+ + b, dy". Let X = 8/6y* where s > r. Then 2.21
holds and tells us that

2.26 b, =0 for s >mn.
Let Y =68/0y’. Thus 2.22 holds. Thus

X(b) X(y")

Yo Y(y")

_ b 4 Bb, s _ 8b _ 8b, _ 0b
ays i ayz s ays aym 6ys

0 = <db, A dyt; X, YD = l

Therefore
2.27 a=bdy' + -+« + bdy”

where by, +++, b, depend only on y', +++, y".
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Our reduction problem is thus obviously reduced to the case n = 7.
We therefore start all over again, supposing n = r. *

We consider first the case in which the skew symmetric matrix,
the » by = minor of 2.11

[aij]i,j=1,---,r

has a nonzero determinant. Then 7 is necessarily even: r = 2p. One
can then solve the equations

2.28 a; Y’ = a; (summation convention!)
for the functions Y*, --., Y” which are not all 0 by 2.12. Let Y be
the vector field
v 2
oz’

There is a coordinate system ¥, - - -, " such that ¥ = 8/6y" |ef. Chevalley,
p. 89, Lemma 1].

Using the original coordinates, it is easy to see from 2.28, that
for our Y

2.29 da, Y, 7Z)=La, Z) for every Z .

Let Z = 8/oy’. Expanding 2.29 (as in the lines between 2.26 .émd
2.27 above) one obtains

For 7 = r this says that b, = 0, and this in turn shows that 8/dy (b;e™") =
0. (Here y is an abbreviation for y".) Thus a = ¢S where

B - hld?/l +oree + hr~1dyr_1
and
2.3 By ++«, h._, depend only on y*, «--, y™*.

We will show that A satisfies the conditions of 2.1 with 7 replaced by
r — 1. Since a = ¢'B we have da = ¢'(dy A\ B + dB). Now «a®’(0) # 0
80, in a neighborhood of 0,

0=y ANB+dBYNA - Ndy ANB+dB)  (p factors),
whence

0#=pdy ABAABA -+ ANdB+dB N --- NdB

or
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0+ pdy A B + 8,

Now 5% certainly is 0, because it has 2p = 7 differentials dy*, ---, dy™*
in it, so that there will be repetitions. Thus B8“~ = 0 in a neighborhood
of 0, while 8" =0 as we just observed. Now 2.24 shows that
¢ls (B, 0) = » — 1. Thus 2.1 applies and

B =w'du* + «+- + du*
in some coordinate system u', .-, %*. Thus
a = v'du + v’dut + -« + vdur,

These functions are independent because a®” #= 0. Hence the desired
reduction has been achieved.

The remaining case is where the determinant of [a;;] vanishes at
0. In this case its rank is less than », but it cannot be less than
r — 1, because the rank of 2.11 is ». Hence its rank is » — 1 and
so r — 1 is even’, as the rank of an antisymmetric matrix is even.
In particular, the rank of [a;;] cannot be », so that det [a,] = 0.
However [a;;] has at least one r — 1 rowed minor whose determinant
is nonzero. It follows that there are functions Y?, ---, Y" such that

2.31 a;Yi=1 and a;Y'=0.
Let Y = Y’8/0x’. Properties 2.31 translate into
2.32 la, Yy=1and da;Y,Z)=0 for every Z .
We now choose coordinates y', <+, y" so that Y = 9/6y". Using

2.32 in the same way as before, we find that
a=bdy' + -+ + bdy”
where
2.33 b,=1 and by, ~++, b,, depend only on y*, ---, y" .

Let bdy' + «++ +b,,dy" =8, Thena=+dy. Nowr=2p+1
and 0 Fa” =a A a® =a A 8%, Hence 87V £ 0. On the other
hand 8 = 0. Thus r — 1 is clearly the rank of the matrix 2.11 for
B. We must, however, verify that 8(P) + 0, because cls (8) is even.
This might in fact not be true! We can, in such a case write

a= (b + Ddy' + - +bady™ +dy —y) =7+ dy,

where y stands for y” — ¥, and the last equality itself defines 7.
Then v(P) # 0, and otherwise v has all the properties of B that have

2 [cf. Cartan, p. 13]
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already been established for the induction argument. Thus 8 (or )
has the form u'dv' + +-+ + u?dv® and @ can easily be brought into
the desired from.
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