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l Introduction* Let y denote a vector in ^-dimensional Euclidean
space En,y ^ 0 means that each component of y is nonnegative. Let
f{t, y) be a function with values in En defined on the domain D =
{(t, y),0 ^t < co, ye En, y ^ 0}. Assume that f{t, y) is continuous on
D and that for each (ί, y) e D, -f(t, y) ^ 0, and that f(t, 0) = 0. Let
C be a positive constant. It is known, [*, 4], that the differential
equation dy\dt — /(ί, y) possesses at least one solution y = y(t), defined
for 0 ^ t < co, with y(t) ^ 0 for 0 ^ t < co, and satisfying | y{0) | = C,
where | | denotes the Euclidean norm in En. (Actually the hypothesis
of the theorem referred to involves an additional condition on f{t, y),
however the proof given in [4] can be modified so as to avoid the need
for this condition.)

It was shown in [2] that the linear case of the result just quoted
has a generalization to an infinite dimensional case. Before describing
this result it will be necessary to introduce the following terminology
and notation. Throughout the remainder of the paper Y will denote
a (real) Banach space with norm || || and K some fixed, closed convex
cone in Y. For y e Y, y ^ 0 will mean yeK. A linear operator A on
Fwill be said to be nonnegative if Ay ^ 0 whenever y ^ 0. A nonempty
set of the form H = H(y*) — {y: y e K, y*(y) = 1}, where y* is in the
dual space F* of Y will be called a cross-section of the cone K. Theorem
1 of [2] concerns the linear differential equation on the Banach space Y,

(1.1) dy/dt = -A(t)y ,

where for each t, 0 ^ t < co, A(t) is a nonnegative bounded linear operator
on Y, and A(t) is strongly continuous on 0 ^ t < co. The result states
that if the cone K has a weakly compact cross-section then the differential
equation (1.1) has a nontrivial solution y — y(t) satisfying y(t) ^ 0 for
0 S t < co.

Theorem 3 of [2] is the dual of Theorem 1 and concerns the differential
equation on F* adjoint to (1.1)

(1.2) dyηdt = -A*(t)y* ,

where for each t, 0 fg t < co, A*(t) is the adjoint of A(t). Let A(t) be
as above, this theorem states that if K has an interior point then (1.2)
has a nontrivial solution y* — y*(t) satisfying y*(t) e K* for 0 ^ t < co.
i£* in F* is the dual cone of the cone K in Y, consisting of those
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10 CHARLES V. COFFMAN

elements y* such that y*(y) ^ 0 for each yeK.
The main result of this note, Theorem 4.1, generalizes the result

of [4] mentioned above to an infinite dimensional case and contains both
of the results just quoted.

The following standard terminology will be used. A closed linear
manifold Γ in the dual space Y* of Y is called determining for Y if,
when yeY, y(y) = 0 for each yeΓ implies y = 0. Such a manifold
defines a topology, referred to as the weak Γ-topology, on Y. The
generalized sequence {yΛ} of elements of Y has limit 0 in the weak Γ-
topology if and only if lim* Ύ(yΛ) = 0 for each yeΓ.

2. Differential equations on a Banach space* Let Γ be a closed
linear manifold in Y* which is determining for Y. A function y(t)
on some interval / on the real line, with values in Y9 will be said to
have a weak /'-derivative, or to be weakly Γ-differentiable at t e I if
the limit as h —> 0 of the difference quotient (y(t + h) — y(t))/h exists
in the weak .Γ-topology. If y(t) is weakly /'-differentiable on /, its
weak /"-derivative will be denoted by DΓy(t). Let C be a subset of
Y and let / be, as above, an interval on the real line. Consider the
differential equation

(2.1) dyldt=f(t,y)

where f(t, y) is a function from I x C —> Y, continuous in the weak
Γ-topology. Let y(t) be a function on / with values in C. If y(t) is
strongly continuous and strongly differentiable on / with a strongly
continuous derivative dy/dt, and if (2.1) holds, y(t) will be said to be a
strong solution of (2.1) on /. If y(t) is strongly continuous, weakly abso-
lutely continuous and strongly differentiable a.e. on /, and if (2.1) holds
a.e. on I, y(t) will be said to be a strong solution in the extended sense
of (2.1) on I. Finally y(t) will be said to be a weak Γ-solution of (2.1)
on I if it is weakly Γ-differentiable on I and if DΓy(t) = /(*, y(t)) on /•
Obviously if y(t) is a weak Γ-solution of (2.1) then DΓy(t) is weakly
/^-continuous.

LEMMA 2.1. // y(t) is a strong solution in the extended sense of
(2.1) on /, then it can be expressed as the Bochner integral of its
derivative.

Proof. Since y(t) is strongly continuous, its range lies in a separable
subspace of Y. Clearly the values of dy\dt, where it exists will be in
the same subspace. Put

(2.2) n{t)=f{t,y{t)) ,
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then u(t) is weakly /"'-continuous and coincides with dy/dt a.e. where
the latter is defined. Since u(t) is almost separably valued and weakly
F-continuous, it follows from Theorem 1.1.7, [3, p. 330], that u{t),
hence dyjdt is locally Bochner integrable on I. Since y(t) is weakly
absolutely continuous it may be expressed as the indefinite integral of
dyjdt, Theorem 3.8.6, [5].

LEMMA 2.2. Let y(t) be a function defined on I with values in
C. In order that y(t) be a strong solution in the extended sense of
(2.1), it is necessary and sufficient that y(t) be a weak Γ-solution of
(2.1) and that DΓy(t) be almost separably valued.

REMARK. If Γ = Γ* and if y(t) is a weak Γ-solution of (2.1), then
DΓy(t) is necessarily separably valued, since it is weakly Γ-eontinuous;
see [5], p. 59.

Proof of Lemma 2.2. Necessity. Let y(t) be a strong solution in
the extended sense of (2.1). Let u(t) be defined by (2.2). From the
proof of Lemma 2.1, u(t) is almost separably valued and for t, V e /,

u(t) dt. For each yeΓ, Ύ(u(t)) is continuous, conse-
t' ret ~ι

quently Ί{y{t)) e C1 and d[γ(y(t))]ldt = Ύ(u(t)), since one has 7 \ u(t) dt =

S i LJί' J

j(u(t)) t. It follows that DΓy{t) exists everywhere on I and that
DΓy(t) - u(t).

Sufficiency. Let y{t) be a weak Γ-solution of (2.1) and let DΓy(t)
be almost separably valued. By Theorem 1.1.7, [3], DΓy(t) is locally
Bochner integrable on I. For each T G Γ , y(DΓy(t)) is continuous on 7,
so for ί, V e I, y(y(t)) - Ύ(y(t')) = ^7(DΊ

Γy(t)) dt - γ [ ^ ^ ( ί ) dί]. Since
Γ is determining for Y it follows that y(t) can be expressed as the
indefinite Bochner integral of DΓy(t). Hence y(t) is in fact strongly
absolutely continuous, and, by Corollary 2, p. 88, [5], y(t) is strongly dif-
ferentiable a.e., and dy\dt coincides a.e., where it is defined with DΓy(t).

3. Convergence of approximate solutions. Let Y, Γ, C, I, and
/(£, y) be as in § 2. The following generalization of the notion of an
ε-approximate solution of a differential equation will be used. Let V
be a neighborhood of 0 in the weak F-topology. A function y(t) will
be called a F-approximate weak F-solution of (2.1) on / if

(i) y(t) is defined on 7, has values in C and is weakly Γ-continuous;
(ii) for some finite set of points S on I, DΓy{t) exists and is weakly

Γ-continuous on I — S, further DΓy(t) has only simple discontinuities,
in the weak Γ-topology, at points of S;

(iii) (DΓy(t) - f(t9 y)) e V ΐor t e I - S.
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REMARK. In view of the principal of uniform boundedness (ii) implies
that 11 DΓy(t) \ | is locally bounded on I.

LEMMA 3.1. Let {yn{t)} be a sequence of weakly Γ-continuous
functions defined on I with values in C. Let C be compact in the
weak Γ-topology. For each neighborhood V of 0, in the weak Γ-topology,
and for each compact subinterval Γ of I, let there exist an N = N(V, Γ)
such that for all n ̂  N, yn(t) is a V-approximate weak Γ-solution of
(2.1) on /'. Then there exists a subsequence {ynjc(t)} which converges
uniformly on every compact subinterval of I to a weak Γ-solution y(t)
of (2.1) on I.

Proof. The existence of a subsequence convergent on each compact
subinterval of I will follow from Ascoli's theorem, [1, p. 43], if it is
shown that the sequence is equicontinuous in the weak jΠ-topology.
Let ί0 G / be arbitrary, it will suffice to show that for each 7 G Γ, and
for each ε > 0 there exists a § = <5(ε, 7, ί0) such that for n = 1, 2,

(3.1) \y(yΛt)-vΛto))\<s

whenever t e I, and \t — to\ < δ. For some δ0 > 0, there exists, by the
principle of uniform boundedness, an M such t h a t | | /( t , y)\\ ^ M for
t e I, i t — t01 ^ δ0 and yeC. For n = 1, 2, , one has

(3.2) y(yn(t)) - y{yn{Q) = Γ 7(/(ίf yn{t))) dt

+ [ Ύ(DΓyn(t) - f(t, yn(t))) dt .

For all sufficiently large n, say n^n0, \ y(DΓyn(t)-f(t, yn{t))) \ <ε/2 || 7 || δ0,
for t e /, 11 - tQ I < δQ. Thus, if δt < min (δQ, e/2M \\ 71| δ0) then (3.1)
holds for t e I, 11 — t0 \ < δ1 and n ^ n0. Clearly it is possible to choose
a δ, 0 < δ ̂  δ19 such that (3.1) holds for all n when ί e /, | ί - t0 \ < δ.

Let the subsequence {ynjΰ(t)} of the original sequence be uniformly
convergent on each compact subinterval of I to y{t). For each yeΓ,

i, yΛ]fc(ί)) — 7(/(ί, y(t)) and Ύ(DΓynβ) - f(t, ynβ))) - 0 uniformly on
Λ]fc(ί)) 7(/(ί, y(t)) and Ύ(DΓynβ) f(t, yn

each compact subinterval of /. It follows that y(y(t) — y(t0)) =

1 7(/(ί, ί/(ί))) dt, for £, ί0 G /, for each yeΓ. Consequently DΓy{t) exists

oiϊ I and DΓy(t) = /(t, y(t)) there.

4. An existence theorem* As a consequence of the results of the
last section, one has the following local existence theorem for the problem
(2.1).

THEOREM 4.1. Let the unit sphere in Y be compact in the weak
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Γ-topology. For some real interval /, some point yQe Y and some
positive constant k let f{t, y) be defined and weakly Γ-continuous for
t e If || y — y0 || :g k. Let t0 be in the interior of I, then on some open
subinterval Γ of I, with tQ e /', there exists a weak Γ-solution y(t) of
(2.1) satisfying the initial condition

(4.1) y(tQ) = y 0 .

Proof. It can be assumed that I is compact, so that | |/(ί, y) || ^
M < co for t e I, \\ y — y01| ̂  k. Let δ be some number on the range
0 < δ < k/M, such that the interval / ' = {t: \ t - tQ \ < δ} c I. For a
positive integer n, subdivide Γ by the points tx = t0 + Iδjn, I = 0,
± 1 , , ±n — 1. Define a function yn(t) on Γ as follows: let yn(tQ) =
y0, and let yn(t) = y0 + (t - to)f(to, y0) for t o ^ t ^ tu clearly then
II Vn(t) — Vo II ^ M(tx — tQ) ̂  &/w for t0St ^ t1# Assume that #„(£) is
defined foτt0^t^tltl^n- 1, with || yw(ί) - y01| ̂  ZA;/̂  for t0 ^ t ^
tl9 and put yn(t) = ^(ί,) + (ί - tt)f(tl9 yn(tt)) for ί, g t ^ ίI+1. Thus
II l/n(*) — !Λ>II = (ϊ + l)k/n, and the process can be continued to define
yn(t) on t0 ^ ί < δ, with || yw(ί) - y0 \\ < & there. yn(t) is defined to the
left of ί0 in a similar fashion.

Let yjt) be so defined for n = 1, 2, . The interval I being
compact, /(£, #) is uniformly weakly Γ-continuous for t e /, || y — y0 \\ ̂  k.
It readily follows that, given 7 c Y, a neighborhood of zero in the
weak Γ-topology, then for all sufficiently large n, yn(t) is a F-approximate
weak Γ-solution of (2.1) on I ' .

The existence of a weak Γ-solution of (2.1) on Γ satisfying the
initial condition (4.1) now follows from Lemma 3.1.

5 Differential equations on cones* The main result of this note
is the following.

THEOREM 5.1. Let K be a closed convex cone in the Banach space
Y. Let Γ be as above, and let there exist a yoe K* Π Γ such that the
cross-section H(70) of K is compact in the weak Γ-topology on Y. Let
1 — [0, co) and let f{t, y) be defined on I x K, and continuous in the
weak Γ-topology, and suppose that

(5.1) -f(t,y)eK for (t,y)eK.

assume also that

(5.2) f{t, 0) = 0 .

Then there exists a weak Γ-solution y(t) of (2.1) on I with y(t) e K
for all tel, and with y(0) e H.
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Proof. First it will be shown that for each T > 0 there exists a
weak Γ-solution yτ(t) of (2.1) on [0, T] with yτ(t) e K for 0 ^ t ^ T,
and having 2/Γ(0) e H. Let T > 0 be given, let n be a positive integer
and let ^ be an arbitrary element of K. Subdivide [0, T] into n
subintervals of equal length, and construct a polygonal approximate
solution yn(t) = yjt, rj) as in § 4, beginning at t = Γ with 2/w(Γ, ^) =
>7 and proceeding to the left. That is, tk — k T/n, k = 0, , ti, being
the endpoints of the intervals of the subdivision, if yjt, rj) is assumed
to be defined on [tk, T], k > 0, the definition is extended to [tk~lf T]
by putting

(5.3) yjt, η) = yjtk, η) + (ί - «*)/(«*, ̂ , 3?))

on [tk-.19 tk]. Notice that because of (5.1) at no point can the polygon
leave K.

From the fact that f(t, y) is weakly jΓ-continuous it readily follows,
using (5.3) and an induction argument that the mapping of K-^K
given by f)-*yn (0, rj) is continuous in the weak F-topology. From
(5.2), it follows that yn(0, 0) = 0. Because of (5.1) one has, in view
of (5.3) that yjt, η) ̂  yn(t'9 rj) for 0 ^ t < V ̂  Γ, and consequently that

(5.4) 7 0 (vΛί , rj)) ̂  VMV, V)) foτO£t<t'£T.

The weak Γ-continuity of the mapping η —> yn(0, rj) implies therefore,
the existence of values f) 6 K for which yn(0, rj) e H. For each n =
1, 2, , let rjn be chosen so that yn(0, yn) € iί. By (5.4) one has that
for n = 1, 2, y.(ί, ?.) e JKΊ for 0 ^ ί ^ T, where i Γ ^ ^ : y e K, 70(tf)^l}.
Since ίΓj is weak F-compact, /(ί, /̂) is uniformly weakly /^-continuous
on [0, T] x Klf thus it follows, as in the proof of Theorem 4.1, that
the sequence yjt, τjn) satisfies the hypotheses of Lemma 3.1. Conse-
quently that lemma implies that there exists a weak Γ-solution of (2.1)
on [0, T] such that yτ(t) e Kx on [0, T] and yτ(0) e H.

For each n — 1, 2, , let yjt) be a weakly Γ-continuous function
from I to Kx with j/»(0) € i ί and such that on [0, n], yn(t) is a weak
Γ-solution of (2.1). The sequence {yn(t)} satisfies the hypotheses of
Lemma 3.1, and the conclusion of the theorem follows by an application
of that lemma.

Theorem 3 of [2] follows immediately from Theorem 4.1 above in
view of the observation (ii) of [2], namely that the dual cone K* of
a cone K with interior has a weak* compact cross-section. If Γ — F*
then the solution of (2.1) whose existence is asserted in Theorem 4.1
is, by Lemma 2.2 and the remark following the statement of that
lemma, a strong solution, in the extended sense, of (2.1) on /. If the
mapping/(ί, y) of I x if to — K is continuous with respect to the strong
topology on Y it is not difficult to see that a strong solution in the
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extended sense, of (2.1) is in fact a strong solution of (2.1). Thus
Theorem 1 of [2] also follows from Theorem 5.1.

If Y is finite dimensional, Theorem 5.1 implies a result similar to
Theorem (*) of [4] referred to in § 1. In the latter result the initial
value y(0) is asserted to lie on the surface of a sphere JJ y\\ = C, C > 0,
rather than on some hyperplane. For the finite dimensional case it
is clear that the proof given above can be modified to give this different
normalization of the initial value.
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