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ON THE SPECTRUM OF A TOEPLITZ OPERATOR

P. L. DUREN

1. Introduction* A Toeplitz operator T is one which transforms
a sequence x = (xQf xltx2 ) into a sequence y according to the formal
law

OO

( 1) Σ cn-kxk = yn , n = 0,1, 2, .
fc=Q

If the complex coefficients cn satisfy the condition

( 2) Σ \e J < oo ,
W = — o o

t h e n Γ carries each lv space (1 ^ p ^ c o ) into itself. Here lv is the

Banach space of all complex sequences x — (xQ, xl9 •••) for which the

norm

ll»ll,=

is finite. As usual, || a? ||«, = sup | xn |.
Under the assumption (2), M. G. Krein [7] has described the spectrum

of T as an operator in lp. His method uses some rather deep theorems
on the factorization of absolutely convergent Fourier series. Actually,
Krein's emphasis is on the Wiener-Hopf integral operator, which is
the continuous analogue of T. Without knowledge of Krein's work,
Calderόn, Spitzer, and Widom [4] used similar methods to obtain most
of the same results on the spectrum of T.

The key to the spectrum of T, in any lp space, is the continuous
closed curve Γ defined by

< 3) λ = F(θ) = Σ cnβ
inB , 0 ^ θ < 2π .

n — ~ oo

For any point λ g Γ, it is the winding number of Γ about λ which alone
determines the exact spectral character of λ. The precise results,
which are due to Krein, will be stated below. Since the spectrum is
always a closed set, it follows from these results that the entire curve
Γ belongs to the spectrum of T. There remains, however, the finer
question: for what reason is a point λeΓ in the spectrum? That is,
to which part of the spectrum does λ belong? For operators T satisfying
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22 P. L. DUREN

the general condition (2), only fragmentary answers to this question
are known.

We shall be able to supply a complete answer for the special class
of Toeplitz operators T such that

(4) cn = 0, n>l, n < — m cι Φ 0 , c_w Φ 0 .

Here I and m are certain non-negative integers. Such an operator will
be called a multίdiagonal Toeplitz operator; its associated Toeplitz
matrix has at most I + m + 1 non-vanishing diagonals. The pair of
numbers {I, m) will be called the diagonal index of T.

In this paper, Krein's results will be derived, for multidiagonal
Toeplitz operators, by an entirely different method, relying upon the
elementary theory of difference equations with constant coefficients.
This approach gives new insight into the theory, and it has the additional
advantage of providing a complete spectral classification of the points
on the curve Γ. Here the results go beyond those of Krein. Essentially
the same methods will also be applied to yield partial results on the
spectra of more general operators. I did most of this work, and
presented it in my thesis [5], before I became aware of Krein's paper,
where the major features of the spectrum were already described.
However, continued interest in the part of the spectrum which lies on
the curve Γ; in particular, recent work of A. Brown and P. R. Halmos
[3], has seemed to recommend publication.

2* Statement of results* Before the theorems can be stated, we
must explain some terminology. For any bounded linear operator T
on a Banach space X, the resolvent set p{ T) is the set of all complex
numbers X for which (T — XI) is one-to-one onto X. The spectrum
o(T) is the complement of p{T)y and is composed of three not necessarily
disjoint parts. The point spectrum σp(T) is the set of all X such that
(T — XI) is not one-to-one. The dimension of the null-space of (T — XI)
is called the multiplicity of λ. The compression spectrum σc(T) consists
of those λ for which (T — Xl)X is not dense, and the deficiency of X
is the number of linearly independent functionals in the dual space
X* which annihilate (T — Xl)X. Finally, the essential spectrum σe(T)
is the set of all λ for which (T — Xl)X is not closed.

Now let T be a Toeplitz operator whose coefficients satisfy (2),
and let Γ be the associated curve defined in (3) by the continuous
function F(θ). For any point λ ^ Γ , the finite integer

(5) n = n(X) = - L \d arg {F(θ) - λ}
2π Jo

is called the winding number of Γ about λ. Krein's main results may
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be expressed as follows.

THEOREM (Krein). Let T be a Toeplitz operator satisfying (2),
defined in any lp space, 1 ^ p ^ oo. Then

1. Xep(T) if and only if X&Γ and n(X) = 0.
2. If λ g Γ ami n(X) < 0, £/ιew λG0"p(!Γ) with multiplicity \n\,

while Xgσc(T) and X£σe(T).
3. If X£ Γ and n(X) > 0, then Xe oc(T) with deficiency n, while

X£σp(T) and X$σe(T).
4. σe(T)aΓ. IfXeΓ and if either the multiplicity or the

deficiency of X is finite, then Xeσe(T).

As to whether or not a point on the curve Γ can belong to the
point or compression spectrum, the theorem gives no information.

Now let T be a multidiagonal Toeplitz operator with diagonal index
(I, m). In terms of the coefficients of Γ, let us construct the polynomial

( 6 ) Q(z; X) = Σ c-*«ϊ+* - λsι

k = -l

depending upon the complex parameter λ. Because of our assumptions
c_m Φ 0, cz Φ 0, Q is of exact degree I + m, and <3(0; λ) ^ 0. For fixed
λ, let sλ = sλ(X) denote the number of zeros of Q, multiplicities counted,
which lie in | z \ < 1. Let s2 — s2(X) be the number of zeros in \z\ > 1.
Then s±(X) + s2(X) ̂  I + m, with equality if and only if Q(z; X) vanishes
nowhere on | z \ = 1. Finally, let u = u(X) denote the number of distinct
zeros of Q (multiplicities not counted) on | z \ — 1.

THEOREM 1. Let T be a multidiagonal Toeplitz operator with
diagonal index (I, m), acting on the space lp (1 ^ p ^ co). Then

1. λG ρ(T) if and only if sλ(X) = I and s2(λ) = m.
2. jPor 1 ^ >̂ < oo, λ e σ ^ Γ ) i/ and only if sx(λ) > I, and the

multiplicity is s1 — i. /^ L, λ e ov(T) if and only if sx{X) + ^(λ) > I,
and the multiplicity is s1 + u — I.

3. For 1 < p < co, λ£σ c(T) i/ α?ιcί ô ί̂ / i/ sa(λ) > m, α^cϊ ίfeβ
deficiency is s2 — m. /^ Z2, X e oc(T) if and only if s2(λ) + u(X) > m,
α̂ cZ ίΛ-β deficiency is s2 + u — m. In L, s2(λ) > m implies Xeσc(T)
with deficiency ^ s 2 — m; a point λ g Γ belongs to σc(T) if and only
if s2(X) > m, and the deficiency is s2 — m.

4. σe(T) = Γ.
It is not difficult to show that Krein's results follow from Theorem

1 in case T is a multidiagonal operator. The curve Γ is exactly the
set of points λ for which Q(z; X) has one or more zeros on the circle
| s | = 1. For λgjΠ, it follows from the argument principle that
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*i(λ) = -^- darg{Q(β";λ)} = Z -
2π Jo

where n(X) is the winding number defined in (5). Also, for λg/\
sλ(X) + s2(λ) — I + m, so s2(λ) — m = n(K). These relations make it clear
that the two formulations of the results are equivalent for points λ ί Λ
However, the formulation in terms of the zeros of Q(z; λ) remains
meaningful for λ on the curve Γ, where the winding number n(X) is
no longer defined.

3 Proof of Theorem l Let us first record a few fundamentals
for reference. The deficiency of the range (T — Xl)lp is the dimension
of its annihilator in lp. However, each functional in 1% is uniquely
representable, for l^p< oo, in terms of an element of lq, where
IIp + 1/q = 1. It follows that (for 1 ^ p < oo) the deficiency of
X e σc( T) is exactly the multiplicity of λ as an eigenvalue of Γ* in lg,
where T* denotes1 the Toeplitz operator generated by the transpose
of the matrix generating T.

In order to determine σp{T) for a multidiagonal Toeplitz operator
T, let us consider the formal system of equations Tx — Xx in infinitely
many unknowns x0, xlf . Under the assumption (4), this system may
be viewed as a difference equation

( 7 ) J ^ c-kxn+k = Xxn, n = 0,1, 2,

whose solutions {x-u %~ι+1, •••) are required to satisfy

( 8 ) a?_, = a ? _ I + 1 = . . . = 0 ^ = 0 .

The multiplicity of X as an eigenvalue of T in lp is the number
of linearly independent solutions to (7) and (8) which satisfy || x \\p < oo.

The general solution to the difference equation (7) may be expressed
in terms of the zeros of the "characteristic polynomial" Q(z; X) defined
in (6). Let zlfz2, * ,2 r denote the distinct zeros of Q arranged so
that 0 < I z11 ^ I z21 ^ ^ | zr |, and let μk be the multiplicity of zk.
Hence μx+ + μr = I + m.

According to the elementary theory of difference equations [6,
Chap. VII], the general solution to (7) is

( 9 ) xn = Σ Pkin + I) ^ + ι f w. = - I , - I + 1, ,
k=i

where

(Λ (\\ P (£\ — V a P
3=0

1 It is well to note that T*, which is equivalent to the Banach space adjoint of T,
differs from the Hubert space adjoint (when p = 2) by complex conjugation.
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is an arbitrary polynomial of degree no greater than μk — 1.

LEMMA 1. Let wo,wlf ,wk be distinct complex numbers of
modulus one, and let a09 a19 , ak be arbitrary nonzero complex
constants. Then the sequence

tn = Σ aw?
3=0

has the property limsup*-,,. \tn\ > 0.

Proof. Suppose, on the contrary, that tn —> 0. Then

(11) «• = Σ δ i C ? - - l ,
3=1

where bo = a3ΊaQ and ζ, = w3 lw0 Φ 1. If (11) were true, then the
arithmetic means

1 N k r 1 N Ί

N »=1 3=1 L N n=l J

would also tend to —1 as N—> oo. But

i = 1, '"fk. This contradicts the conclusion <τ^—•—1, and proves
the lemma.

LEMMA 2. Lei A, = h(X) denote the number of distinct zeros of
Q(z; λ) which satisfy \ z \ < 1. Then x in (9) has finite lp norm
(1 ^ P < c o ) if and only if

(12) Pk(ξ) = 09 fc=Λ + l, . . . , r .

/^ /αcί, α;w does ?ιoί ίencZ ίo zero if (12) /αίϊs ίo hold.

Proof. Application of Minkowski's inequality shows easily that
(12) implies x e lv. Conversely, suppose (12) is not satisfied, and let K
be the largest value of k for which Pk{ξ) ̂  0. Thus p = | zκ \ ̂  1.
Let ω be the highest power of ξ which appears (with non-vanishing
coefficient) in those polynomials Pk(ξ) such that | zk \ = p, and let
klf k2, , ks be the values of fc (| s* | = p) for which ξω appears in Pk(ξ).
Set zkv = peiQy (v — 1, , s), and construct the sequence

(13) tn = xn(n + 0"ω ̂ ~(%+z) = Σ A, e^+ι)Θ, + θ(-) ,
\n/
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where, in the notation of (10), Av = ak^ω Φ 0. By Lemma 1, tn does
not tend to zero; hence the same must be true for xn.

COROLLARY. The multiplicity of λ as an eigenvalue of T in
ί ί ) ( l g p < c o ) is the number of linearly independent solutions
(a10, , altlljΓl9 a20, , ah>μ/h^) to the equations

h r f̂c-i η

(14) Σ ako + Σ 0Lhi{n + IY zt+ι = 0 , n=-l, - Z + 1, , - 1 .
fc=iL i=i J

LEMMA 3. Let h = /&(λ) 6β ίfee number of distinct zeros of Q(z; λ)
m I z I < 1, and let u — u(X) be the number of distinct zeros on \ z \ — 1.
Then x in (9) has finite L ^orm if and only if

/1Kv P*(f) = «*o, k = h + 1, -. ,h + u;
do)

P*(f) = 0 , fc = A + w + l, . . . , r .

Proof. Conditions (15) are obviously sufficient for the boundedness
of x. To prove necessity, construct the sequence (13) as in the proof
of Lemma 2. Once again, lim sup^oo \tn\ > 0. Thus lim sup^oo | xn \ =
oo if either p > 1 or if p = 1 and β) > 0; that is, if conditions (15)
fail to hold.

COROLLARY. The multiplicity of λ as an eigenvalue of T in l^
is the number of linearly independent solutions (a109 , aht(J.h-lf

ah+1>0, , ah+Ut0) to the equations

(16) Σ «*o«ί+I + Σ " Σ <xkS(n + iy'zt+ι - 0 ,

n = —I, — I + 1, •••, — 1 .

In the system (14) there are I equations in v — Σ&=i fik unknowns.
The rank of the coefficient matrix is min {I, v}. Hence the familiar
theorem "rank + nullity = dimension of domain" [2, p. 227] of linear
algebra tells us that (14) has exactly v — min {I, v} independent solutions.
But v = slf so the part of Theorem 1 concerning point spectrum is
established for 1 ^ p < oo.

Similarly, (16) has v + u — min {I, v + u} independent solutions.
This proves the statement about point spectrum in L.

As for σc{T), the remarks made in the beginning of this section
show that it is equivalent, for 1 ^ p < oo, to study the point spectrum
of T* in lq. The characteristic polynomial associated with T* is

Because of the identity
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Q(z; λ) = z^Q*(l/z; λ) ,

the zeros of Q* are just the reciprocals of those of Q. In particular,
with obvious notation, sf(λ) = s2(λ); s2*(λ) = ^(λ). Hence our previous
results on σp(T) can be applied to yield the part of Theorem 1 which
concerns σe(T). The L case presents a difficulty because It is larger
than lλ\ we therefore obtain only the sufficient condition sa(λ) > m for
a point λ to belong to σc(T) in this case. For completeness, however,
we have included in Theorem 1 a statement of Krein's more precise
result for λ ? Γ .

We now know that for every λ, the null-space of (T — XI) in lp,
1 ^ P ^ °°, is of ,/ιm£e dimension. Thus we have only to apply Krein's
general result to conclude that σe( T) = Γ. It is clear that λ e Γ if
and only if sx(λ) + sa(λ) < Z + m.

The assertion concerning ^(T) now follows by elimination.

4. Completely continuous perturbations* The preceding develop-
ments were founded upon the explicit formula (9) for solutions to a
difference equation with constant coefficients, but it was the asymptotic
behavior of the solutions which was of primary interest. For this
reason, the theory can be partially recaptured for a more general class
of operators leading to the consideration of linear difference equations
whose variable coefficients converge as n becomes infinite. It is plausible
that the solutions to such an equation should behave asymptotically
as though the coefficients were constant, and indeed there are theorems
of Poincare and Perron [8] which affirm this.

Let A be an operator on lp (1 ^ p rg oo) whose associated matrix
(ajk) has the property ajk = 0 for j — k > I or for k — j > m. (Once
again, I and m are non-negative integers.) Such an operator A will
be called a multίdiagonal operator—it need not be a Toeplitz operator.
If, in addition, aj+ιtά-Φ 0 and aj>j+m Φ 0(j = 0,1, •), we shall say
that A has diagonal index {I, m).

It is not difficult to prove [1, p. 63], for 1 < p < oo, that the
completely continuous multidiagonal operators are precisely the ones
whose diagonal sequences tend to zero:

limαi+A.(i = 0 , k = —m, —m + 1, , I .

Suppose now that A is a multidiagonal operator with diagonal index
(i, m), and suppose

(17) limajJ+k = C-k,k = -I, -I + 1, •• , m ; c ^ 0, c_m Φ 0 .

A is therefore the sum of a Toeplitz operator and a completely continuous
operator. The equation Ax = Xx may again be regarded as a difference
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equation

n = 0,1,(18)

whose

(19)

solutions (X.

Σ

-If X-l+1,

X-ι =

kxn+k - Xxn ,

•••) are required

X-i+i = = X-i

to

=

satisfy

0 .

The solutions to (18) can no longer be written down explicitly, but
under the hypothesis (17) their asymptotic behavior is determined by
the zeros of the characteristic polynomial Q(z; λ), as defined in (6).
We shall content ourselves with assuming that the zeros of Q(z; X)
have distinct moduli:

0 < \z1\ < \zt\ < ••• < \zι+m\ .

A theorem of Poincare [8, p. 305] then asserts that the difference
equation (18) has a basis of solutions xn = u{

n

j) for which

(20) lim uHlJu™ = zd , j = 1, 2, . . . , I + m .

Assuming further that λ $ Γ, so that no | zό \ — 1, one readily uses
(20) to prove, as in § 3, that the multiplicity of λ as an eigenvalue of
A in lp(l :g p g oo) is the number of linearly independent solutions
(bi, •••»&,) to the equations

(21) Σ δ X f c ) = 0, n= -I, -l + l, •••, - 1 ,

where s — s^X) is the number of zs inside | z | < 1. The precision of
our final result is curtailed by the apparent fact that the coefficient
matrix of (21) may contain linearly dependent rows, even if s ^ I.
We phrase the theorem in terms of the winding number n(\) of the
curve Γ about a point X&Γ.

THEOREM 2. Let A be a multidiagonal operator in lp (1 ^ p ^ oo)
with diagonal index (I, m), and suppose (17) is satisfied. Suppose
further that λ $ Γ and that the I + m zeros of Q(z; λ) have distinct
moduli. Then

1. n(X) < 0 implies Xeσp(A) with multiplicity ^\n\.
2. n(X) > 0 implies Xeσc(A) with deficiency ^n.

Roughly speaking, the theorem says that the point and compression
spectra of a multidiagonal Toeplitz operator, together with multiplicity
and deficiency, are not diminished by the addition of a completely
continuous operator of the same multidiagonal form. The hypothesis
that the zeros have distinct moduli means geometrically that for no r
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(0 < r < oo) does a curve

w = Σ c-kr
keikθ (0 g 0 < 2π)

k = - l

have a double-point or a cusp at λ.
The conclusion (1) remains valid if only the zeros in | z | > 1 have

distinct moduli. Dually, (2) is still true if only the zeros in | z \ < 1
have distinct moduli.

5 Remarks, It is interesting to contrast the spectrum of a Toeplitz
operator with that of a completely continuous operator. The spectrum
of the latter is a discrete set of points which can cluster only at the
origin. Only the origin may belong to the essential spectrum, while
any other point of the spectrum belongs simultaneously to σp and to
σc, with equal multiplicity and deficiency. (This is the content of the
Fredholm alternative.) For Toeplitz operators the situation is radically
different. According to Krein's theorem, a point XgΓ cannot belong
both to σp(T) and to oc{T). Our Theorem 1 shows that for multidiagonal
Toeplitz operators (and for p < co), the point and compression spectra
are in fact disjoint. It is a reasonable conjecture that this is true
generally.
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