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Introduction. In [1] the notion of the sum of an infinite number
of isols is introduced. In this paper we shall similarly attack the problem
of the product of an infinite number of isols. Before proceeding to
this it is necessary to review the concept of exponentiation. Let ε =
{0,1, •••} be the set of nonnegative integers, f is a finite function
if δf = ε (δf, pf are domain, range of / respectively) and {x : /(a?) Φ 0} is
finite. The set {x : f(x) Φ 0} is called the essential domain of / (denoted
δef) and the set {/(#) :f(x) Φ 0} the essential range of / (denoted pef)>
f is a finite function from the set β into the set a if def £ β and
pef £ a. It can be shown (cf. [3], 181) that there exists a recursive
function rn{x) to two variables such that

(1) All finite functions are generated without repetitions in the
sequence {rn(x)}.

(2) From n, one can effectively find rn(x).
(3) From rn(x), one can effectively find n. Then for any subsets

a and β of ε we define

aβ = {n : rn(x) is a finite function from β into a) ,

In case a and β are finite it is necessary that 0 e a in order to make
aβ have mn elements where a has m elements and β has n elements.
If A Φ 0 we let AB = Req(aβ) where 0 e a: e 4, /? € 5 . Otherwise 0B =
1 if £ - 0, 0β = 0 if B > 0.

Let R = Req(ε). It is known (cf. [3], 189) that 2B = iϊ. Since we
would like an infinite product of identical factors to reduce to an
exponentiation, we see that an infinite product of isols may not be an
isol. On the other hand, if X is an infinite isol, then so is 2X (cf. [3],
182). Thus depending on which exponent we use to formalize the
concept of an infinite product of repeated factors we may or may not
obtain an isol.

A one-to-one function tn from ε into e is regressive (cf. [1]) if
there is a partial recursive function p(x) such that pt g dp and p(t0) =
t0, (Vti) (p(tn+1) = tn). A set is regressive if it is finite or the range of
a regressive function. A set is retraceable if it is finite or the range
of a strictly increasing regressive function. There is no loss of generality
by also supposing that p has the following additional properties: pp S δp
and (Vx) (xeδp—> (m) (pn+1(x) = pn{x))) (superscript denotes iterate).
Define p* by δp* = δp and p*(x) = (μn) (pn+1(x) = pn(x)). Define p by
δp = δp and /0p(e> = {p(x), , p%(#)} where w = p*(x). Two one-to-one
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functions tn and tf

n from ε into ε are recursively equivalent (denoted
tn ~ t'n) if there is a partial isomorphism / such that pt £ δf and
(Vw) (/(*•) — C). The following propositions are proven in [1]. Let
τ = pt and r' = pi' where tn and £i are regressive functions. Then
τ ~ τ' if and only if tn ~ t'n. Let £„ ~ C Then ίw is a regressive
function if and only if t'n is a regressive function. Let τ ~ τ\ Then
τ is a regressive set if and only if τf is a regressive set. Every
regressive function is recursively equivalent to a strictly increasing
regressive function. Every regressive set is recursively equivalent to
a retraceable set. An RET is regressive if it consists of regressive
sets. Let ΛR be the collection of all regressive isols. It is not difficult
to show that there are at least c of them, and that each contains a
retraceable set.

Let V be the class of all subsets of ε, let Q be the class of all
finite subsets of ε. A mapping Φ: V -* V is called a combinatorial
operator if (1) aeQ implies Φ(a)eQ, (2) the cardinality of Φ(a) is
determined by that of a. (3) Φ possesses a quasi inverse Φ~ι such that
for any x e \J {Φ{a)\ a e F}, Φ~\x) e Q and x e Φ(β) if and only if Φ~\x)^β.
Let {pn} be a one-to-one effective enumeration of Q with p0 = Φ. Φ is
called a recursive combinatorial operator if there is a recursive function
g(x) such that Φ(pn) = pg{n). It is well known that a function JP is
recursive combinatorial if and only if it is induced by a recursive
combinatorial operator Φ in the sense that F(Req a) = Req Φ(a) for
every ae V.

Infinite products. In this paper we only consider products of an
infinite sequence of finite positive isols (positive integers). Let {an} be
an infinite sequence of positive integers. For any regressive function
tn with immune range let π(tn) = {n: dern £ pt A (Vx) (rn(tx) < ax)}.

THEOREM 1. π(tn) is an isolated set.

Proof. Suppose that 7 is a recursively enumerable set, 7 £ π(tn).
Let δ — U {δern: n e 7}. Then δ is recursively enumerable and δ g pt.
Since pt is immune, δ is finite. But this implies that 7 is finite as
well. Hence π(tn) is isolated.

THEOREM 2. Let tnf tf

n be regressive functions with immune ranges.
If tn ~ t'n, then π(tn) ~ π{t'n).

Proof. There is a partial isomorphism / such that pt S δf and
f(tn) = tr

n for all n. Let δ = {n: δern S δf}. δ is recursively enumerable.
We may define a function g as follows: δg = δ and for every n e δ, rg[n)

is a finite function with δer9U) = f(δern) and such that for each x e δern,
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= τn(x). g is clearly a partial recursive function and it is not
difficult to show that g is one-to-one, π(tj £ δg, and g(π(tn)) = τr(O.

Thus the recursive equivalence type of π(tn) depends only on the
recursive equivalence type of pt since for regressive functions tn, Vn we
have pt a ptf if and only if tn~tf

n. This justifies the

DEFINITION. Hτ^n = Req τr(*Λ) where T e ΛΛ and ίn is any regressive
function with pt e T.

By Theorem 1 we know that J\Tctn is an isol and that therefore
the product operation (for fixed {an}) maps ΛR into X Let / be a
recursive combinatorial function. In [5] it is shown that the partial
product g(m) = ΠίϊΓ"1 (1 + f(n)) is also a recursive combinatorial
function. It is possible to evaluate Πτ(l + f{n)) by using the

THEOREM 3. If f is a recursive combinatorial function and
g{m) = Π^Γ" 1 (1 +/W) is iίs partial product, then for every TeΛR,
JIr( l + f(n)) = CrίT1) (where G canonically extends #).

Proof. For every set α g ε and integer, w e ε let 1 © a = {x + 1: a? e α}
and a<n ~ {x :xea A x < n}. Since Te Jβ there is a retraceable set
r G Γ which is enumerated by a strictly increasing regressive function ίn.

π(tn) = {̂  : §erw g r Λ (Vs) (r.(^) < 1

Let Φ be a recursive combinatorial operator inducing /, and let

τr(τ) = {n : dern S r Λ (Vα) (a? e dern - r%(.τ) 6 1 © Φ(τ<x))}.

In order to complete our proof we shall show that π is a recursive combi-
natorial operator inducing g and that π(τ) ̂  π(tn).

Let s be an integer and a — {ax, , α8}, αx < < as a set having
exactly s elements. If n e π(a), then Serw S α: and for each i, 1 ̂  i g s,
n(a») = 0 (if ttί e dern) or rn(α<) e l φ ίP(α<βt). Since a<H contains i - 1
elements, r ^ α j may assume any one of 1 + f(i — 1) values. Thus π(a)
contains g(s) elements, i.e. ft induces g. Now let a be any set of
integers and let n e π(a)m We define

π~\n) = δern + (J {Φ~\rn(x) - 1): r%(α?) Φ 0} .

It is clear that π~\n) £ «: and that if rn(a?) ̂  0, then Φ~\rn(x) — 1) £ ε<fl;.
Conversely, suppose that π" 1 ^) £ /3. Then δer% £ /3 and Φ'H^nί^) — 1) S j8
for rn(a0 =̂ 0. But Φ~\rn{x) - 1) £ ε<a; and therefore ^ ( r ^ ) - 1) £ β<x

for rn(a?) =̂ 0. Hence n e TΓ(/3). Thus π~x satisfies the condition of
being a quasi inverse function of π. Since π is clearly effective we
.see that it is a recursive combinatorial operator inducing g. Thus in
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particular G(T) = Req7r(τ). Since tn is regressive there is a partial
recursive function p such that τ S δp and p(tn+1) = £„, p(£0) = ί0 for all
n (satisfying all those conditions given in the introduction). Let δ =
{n : δer_n ^δpλ (Vx) (x e δern-+rn(x) e 1 0 Φ(p?{m)))}. Since pψ{9) = r<£C for
a? e τ, 7r(r) S δ. Then for any integer w e ί w e may effectively calculate
δern, and for each x e δern we may effectively calculate p(x), pp{x), K&Φ(pp(X)}
and finally sn(x) = card [({0} U 1 0 Φ(fir<.)))<rn<.>]. If we let sn(x) = 0 for
α? ί <?er%, then there is a partial recursive function fc(w) such that δh = δ
and rMw> = sn. It is clear that h is defined on δ and that it is a partial
recursive function. Let m,neδ and suppose that Λ<m) = h(n). Since
δβn<n> = δ*r* ^ follows that δerm = δern. For a? e δerm

W » ) = card [({0} U1 w

and

n(.,(α?) = card [({0} U1 © 0(ft-(.,))<rfl(,)] •

Since rh{m)(x) = rh{n)(x) it is clear that rjx) = rn{x). Thus rm and r»
are the same function and therefore m — n. h is a one-to-one function-
If w e π(τ), then δern £ r and x e δern implies that rn(x) e l © Φ(ppix)) =
1 © 0(r<.). If a? = ίm, then rn(tm) e 1 0 Φ({t0, ~ , t ^ J ) , rΛ ( n )(ίm) < 1 +/(m>
and therefore Λ(w) e τr(ίn). Thus λ maps π(τ) into τr(ίw) Finally if
s e π(tn), and tm e δers choose n such that δern = δ er s and such that
r .(«J is r . ( ί J t h element of 1 0 Φ({t0, , ί^}). Since 1 ^ r . ( ί J ^ / ( m )
the function rw is defined. Thus h maps S(r) onto π(tn). π{τ) a π(tn).

If we denote the product Πr«» by Γ: aQ'ax-a2 , then the following
two formulas hold as a consequence of Theorem 3: Γ : 1 2 3 = Γ I
and T:a a a ••• = aT where a> 1. Thus the infinite product operation
as defined is consistent with the previously defined exponentiation and.
factorial operations.
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