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Let A be a real, positive definite, » X » matrix; with 4 we
associate, in the Euclidean n-space R,, the ellipsoid E(A) of points @«
for which

(%, Aw) = 1

where (x,%y) denotes the usual inner product. In references [5], [6],
{7] certain means of convex bodies were studied. It will be shown
here that two particular means of ellipsoids of the type E(A4) corre-
spond to two simple combinations of the corresponding matrices A.
The applications mentioned in the title rest upon this correspondence.
The first two give results about positive definite matrices, including
a refinement of a determinant inequality of Minkowski; the third
application shows the existence of a set of unique ellipsoids related
to a convex body by a set of similar extremal problems, the classical
Loewner ellipsoid being a particular instance.

Throughout this paper the letters A and B, sometimes with
distinguishing marks, denote real, positive definite, # X n matrices.
The distance from 2 to the origin is written ||z ||.

1. The distance and support functions of E(A4) are:

F(@) =v(e, Av),  H(x) =1/(z, A7) .

In the first case, if © = 0, we have F'(x) = ||2]|/]|2]|| where z/||x|| =
2/l|z|| and (2, A2) =1, and so

e ll/llz]l = llz [V =/l 2 1], A=/l z])
= |z [V @/« Az/||2 ) = V/(z, Az) .

In the second case

H(x) = max (x, y¥) where (y, Ay) =1.
Yy

We represent y in the form AMA™'% 4+ v where (2, v) = 0. Then
(¥, Ay) = N(x, A™2) + (v, Av),
whence
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(@, y) = Mz, A72) = 1/(x, A72)n/[1 — (v, Av)],

and the maximum is attaiAned for v = 0.
The polar reciprocal E(A) of E(A) with respect to the unit sphere
E(I) has H(x) as its distance function, F'(x) as its support function.

Consequently
E(A) = E(A™) .

In [5] the p-dot mean of two convex bodies K,, K, in R,, which
have the origin as a common interior point, was defined for p = 1 to
be to convex body M,(K,, K,; ) whose distance function is

[ — HF() + SF@)]

where F is t}}e distance function of K; and 0 < ¢ < 1. From this it
follows that M,(E(A4,), E(A));#) has the distance function

VIA = 9) (@, Aw) + d(z, Aw)] = V(x, [(1 — D4, + d4]x) .
Thus
(2) M(E(Ay), E(A); 9) = B((1 — )4, + J4) .

In [7] the p-mean M,(K,, K;; #) was defined for p =1 to be the
convex body whose support function is

(1 — 9 HP(w) + SH ()]

where H; is the support function of K,. Therefore, by reasoning
similar to the preceding, we have

(3) M(E(Ay), E(Ay); 9) = E(I(1 — 9)AT" + A7) .

2. Our first application is based on the inclusion
(4) M(K,, K; 9) S My(K,, K;; ) ,
established in [5] and [7]* with equality if and only if K, = K, and the

observation that
E(A) € E(B)
if and only if A — B is positive semi-definite. For the latter we write

A = B; we call such an inequality strict if A — B is not a zero matrix.
From (2), (3) and (4) we have

(5) E(1 — DA + 94) & E(1 — DAT + A7) .

1 The inclusion is not _speciﬁcally mgntioned, but in [7] it is proved that M; < M,
for p>1 and in [5] that Mp S My and M; S M.
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Hence, from (5) we obtain an “inequality of arithmetic and harmonic
means” for positive definite matrices.

THEOREM 1. If A, A, are any two real, positive definite, n X n
matrices, then

(1 — DA, + 94, = [(1 — AT + JA]
Jor 0 =9 <1, The inequality is strict except in the trivial cases
A=A, or 4=0,1.
3. The next application is a refinement of the following determi-
nant inequality of Minkowski, cf [1], p. 70.
det'" (4, + A,) = det' 4, + det'" 4, .
Let V be the volume functional. In [5] it was shown that
(6) V(M,(Ky, K3 9)) = [(L = &) VP"(K,) + 9V #(K)][ ™7
with equality if and only if K, = MK, for some A > 0. Since
V(E(A)) = m"’II"(1 + n/2)/det A ,
we have, with p = 2 in (6),
(7) det [(1 — A4, + J4,] = [1 — J) det'™ 4, + & det'™ A,]"

with equality if and only if 4, = MA, for some » > 0. With a slight
change in notation, this is Minkowski’s determinant inequality.
If L is any k-dimensional linear subspace of R,, then

M{E(4) N L, B(A) N L; 9) = M(E(A), E(A); )N L.

Consequently, by letting A’ be the k x k, positive definite matrix
associated with E(A) N L, we obtain

E((1 —NA) + 34) = E(JA — DA, + JAL) .
To this we apply (7), with n =k, to get
(8) det [(1 — DA, + FA4,) = [(1 — &) det’* A] + I det'/* Aj]* .

Let us define |A|, to be the product of the k least eigenvalues
of A, repeated eigenvalues being counted according to their multiplicity.
The inequality

det A’ = A,

with equality if and only if L is the k-dimensional space spanned by
the eigenvectors corresponding to the k least eigenvalues of A, is
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essentially Theorem 20, p. 74 of [1].

In (8 choose L to be the linear subspace spanned by those
eigenvectors of (1 — #)A, + #4, which correspond to the k smallest
eigenvalues of (1 — MNA, + J4,. By (9):

(10) det A; = [ A4, , det A1 = [ A4, |,

and so (8) becomes

(11) |1 — DA, + FA, |, = [(1 — &) | A, |¥'* + | A, V] .

There is equality in (8) if and only if, for some A > 0,
A} = NA]

and equality in (10) if and only if the subspaces L appropriate to
| Ao lxs | A1], are the same. Hence, in (11), there is equality if and
only if the following conditions are met. Let 2, ---, 2, be eigenvectors
of A, corresponding to the &k smallest eigenvalues \; < -+ < \,. These
are eigenvectors of A, corresponding to the k& smallest eigenvalues of
A, which are of the form M\, < -+ < A\, for some A > 0.

Inequality (11), which includes (7) when k = , is an improvement
of a result of Ky Fan, cf. [1], Theorem 21, p. 74, in which the right
side of (11) is replaced by the geometric mean |4,|;°|A,|} since the
power mean of order 1/k appearing on the right side of (11) exceeds
this geometric mean.

If we define ,| A| to be the product of the k greatest eigenvalues
of A, then

(12) | A7, = 1,|A] .
We apply (11) to 1 — $)A;* + #A;* and obtain, after taking reciprocals,
(A = DAT + JAT [ = [A — ) bl Ao [77F + Gl A TV]75

With the use of (12) on the left side, we have finally
W (1 = DAT + FATT S [ — D)o Ao |75 + 4] Ay |74

as a “dual” result to (11). The cases of equality are given by the
conditions for equality in (11) with the word “smallest” replaced by
“greatest” throughout.

The last application concerns a generalization of the Loewner
ellipsoid of a convex body K. Let = be an interior point of K. The
classical Loewner ellipsoid is that unique ellipsoid, centred at & and
containing K, which has minimum volume, cf. [3]. Let us take the
point & to be the origin and denote the mean cross-sectional measures
W,v=20,1,-.--,n—1, of E(A) by W,(A); for their definition see
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[2]. In particular W,(4) = V(E(4)). We will show that, for each v
there is a unique ellipsoid E(A) containing K for which W,(A4) is a
minimum.

It is clear that W,(A) depends continuously on the entries a;; of
A. Moreover, when we restrict the ellipsoids £(A) not only to contain
K, but also to be contained in the sphere E(I/p?), the domain of
definition of the functions W,(A) is closed and bounded. Consequently
each of the functions W,(A) attains a minimum. Furthermore, if the
radius of the bounding sphere E(I/p* is chosen to be sufficiently large,
the minimum of W,(4) and the matrix or matrices for which it is
attained will be independent of p. Thus the uniqueness is the only
point in question.

In [6] inequality (6) was extended to read

(18) W[ M,(K,, Ky 9] = [(1 — )W o(K) + oW/ (K )]

for p =1, with equality if and only if K, = MK, for some A > 0.
Inequality (18) is true for all »p = 1 however. This can be shown from
the special case » = 1 in the following fashion. We make the usual
type of reduction to the special case in which W(K) =1, +1=0,1,
by setting:

N = WIe(KY), Ky =NK{,
& = IN?[(L — NP + NP

Then

M,(KS, K5 &) = My(K,, K; 9)/ 1
where

L= [ — HNg? + PP
Since W, (K!) =1, in order to prove (13) it is enough to prove
W/M,(K;, Ki; ) < 1.
This has been shown to be true for p = 1. By Theorem 2 of [5]
My(K;, K3 9') S M(KS, K3 o)

with equality if and only if KJ = K/. These assertions, together with
the monotonic character of W, cf. [2], p. 50, prove (13) and establish
the cases of equality. Naturally we will use (13) for p = 2.

Let A, be a matrix which is a solution of the minimum problem:

K< E4), W,(A) = minimum.

Suppose A is a second solution. From
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KS E@,), KcEWA)
we have
K< E((1—®A, + 94) ;
from (13) we have
WA — DA, + JA) = Wi(4,) = Wy(4))

with equality in the inequality if and only if A, = AA4!. The last
equality shows that we must have A =1 and so A, is unique.

In a similar way we can establish that, given K and an interior
point of K which we take as the origin, there is a unique ellipsoid
E(B,) which is contained in K for which is a maximum. The only
difference is the use of Theorem 2 of [7] in lieu of inequality (13).

We summarize:

Theorem 2. Given a convexr body K in FEuclidean m-space and an
interior point of K which we take as the origin, there are positive
definite n X n matrices A,, B,,v=0,1, «+-,n — 1 such that, among
the ellipsoids E(A) which contain K, E(A,) ts the unmique, outer,
Loewner ellipsoid minimizing W, and among the ellipsoids E(B)
which are contained in K, E(B,) is the unique inner, Loewner ellipsoid
maximizing W,.

We close with several observations. Suppose K is the polar re-
ciprocal of K with respect to E(I), then, in the notation of Theorem
2, E(B;") is the vth outer Loewner ellipsoid of K while E(4;") is the
vth inner Loewner ellipsoid. To prove this, we denote the outer and
inner Loewner ellipsoids of K with respect to the origin by E(4,),
E(B,) respectively. If K, S K,, then K, 2 K,. Consequently, by (1),

EA)=EA4Y<S K, E®B)=EBH2K.
Therefore
EA;) S EB,), EBY)2EA).
Applying the same argument to A, and B, we get
E4;) S E(B), EB)2EA).

In terms of the ordering of positive definite matrices, these in-
clusions become

(14) A7*=B,, A, =B, A*=B,, A =B,
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Now when B = A, then A = B~ since, from the first condition we
have

E(A) 2 E(B)
and, by taking polar reciprocals, we obtain
E(A7) S E(B™).
Apply this to the last inequality of (14). Taken together with the
first inequality of (14), this yields
A7z B,z A
Thus B, — A;* is both positive and negative semi-definite. Hence
A= B,.
By a similar argument it is shown that
Bl=A4,.

.Part of Theorem 2 remains true even if the centre of the ellipsoids
to be considered does not lie within K. We give this as a corollary.

COROLLARY TO THEOREM 2. Given a convex body K, not mecessarily
containing the origin, there are positive definite matrices A,, v =
0,1, ---,n — 1, such that, among the ellipsoids E(A) which contain
K, E(A,) is the unique outer Loewner ellipsoid minimizing W,.

Suppose E(A) contains K; since E(A) is centred at the origin it
also contains a sufficiently small sphere E(oI) and so, by the convexity
of E(A), E(A) contains

K' = KU E(pI)

where the bar denotes the convex closure. Conversely, if E(A) contains
K’ it contains the subset K. We claim as proof of the corollary that
the outer Loewner ellipsoid E(4,) of K’ is also that of K. Indeed
E(A,) contains K and if an ellipsoid E(A4)) contains K and is such that

W4 = W(A,)

then E(A]) must contain K’ and so, by Theorem 2, A’ = A,.

Let « be the interior point mentioned in Theorem 2 and let E(A4,(x)),
E/(B,(x)) be the vth outer and inner Loewner ellipsoids of K which are
centred at x. We allow ¢ to vary and so generate two collections of
ellipsoids {E(A4,(x))} and {E(B,(x))}. For v = 0 Danzer, Laugwitz and
Lenz in [4] have shown that in the first collection there is a unique
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ellipsoid for which the volume W, is a minimum and in the second
collection there is a unique ellipsoid for which the volume is a maxi-
mum. We have not been able to decide if this is also true for v =1,
2,7+++,m —1 with W, in place of the volume.
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