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Introduction. It has long been known that every positive rational
number can be represented as a finite sum of reciprocals of distinet
positive integers (the first proof having been given by Leonardo
Pisano [6] in 1202). It is the purpose of this paper to characterize
{cf. Theorem 4) those rational numbers which can be written as finite
sums of reciprocals of distinet nth powers of integers, where n is an
arbitrary (fixed) positive integer and “finite sum” denotes a sum with
a finite number of summands. It will follow, for example, that p/q
is the finite sum of reciprocals of distinet squares' if and only if

2o, =~ 1)u[1,2).
q 6 6
Our starting point will be the following result:

THEOREM A. Let n be a positive integer and let H™ denote the
sequence (1, 27", 87", ...). Then the rational mumber plq is the
finite sum of distinct terms taken from H™ if and only if for all

&> 0, there is a finite sum s of distinct terms taken from H™ such
that 0 < s — plg < e.

Theorem A is an immediate consequence of a result of the author
[2, Theorem 4] together with the fact that every sufficiently large
integer is the sum of distinet nth powers of positive integers (cf.,

(81, [7] or [3].

The main results, We begin with several definitions. Let S =
(81, 83, --+) denote a (possibly finite) sequence of real numbers.

DEFINITION 1. P(S) is defined to be the set of all sums of the

form >\7., &5, where ¢, =0 or 1 and all but a finite number of the
g, are 0.

DEFINITION 2. Ac(S) is defined to be the set of all real numbers
% such that for all € > 0, there is an se P(S) such that 0 £ s — 2 < &.
Note that in this terminology Theorem A becomes:

(1) PH") = Ac(H") N Q

Received May 13, 1963.
1 This result has also been obtained by P. Erdés (not published).

85



86 R. L. GRAHAM

where @ denotes the set of rational numbers.

DEFINITION 3. A term s, of S is said to be smoothly replaceable
n S (abbreviated s.r. in S) if s, < S5 Surse

THEOREM 1. Let S = (s, 8, +++) be a sequence of real mumbers
such that:

1. s,10.

2. There exists an integer r such that n = r implies that s, is
smoothly replaceable in S.

Then

Ac(S) = eg Nz, 7+ 0)

where P,_, = P((s, -, 8,.,)) (note that P, = {0}) and o = 3.7, si(where
possibly o 1s infinite).,

Proof. Let € U,ep, [, m+ 0) and assume that & ¢ Ac(S). Then
x € [x,w + o) for some w € P,_,. A sum of the form = + 3, 8;, Where
r=%<1< -+ <1 will be called “minimal” if

k—1 k
(2) ﬂ+t§sit<w<n+t§s,~,

(where a sum of the form 3!, is taken to be 0 for b < a). Note
that since x ¢ Ac(S) D P(S) then we never get equality in (2). Let
M denote the set of minimal sums. Then M must contain infinitely
many elements. For suppose M is a finite set. Let m denote the
largest index of any s; which is used in any element of M and let
P=7+ X}..8;, + 8, be an element of M which uses s, (where r <
11 <7< +++ < J,<m and possibly n is zero). Thus we have

Tc+k§s,-k< < T+ kzz,lsjk—l—gismﬂ

since s, is s.r. in S. Therefore there is a least d =1 such that
e<p =1+ i85, + ¢ Sure. Hence p’ is a “minimal” sum which
uses 8,i;, and m 4+ d > m. This is a contradiction to the definition
of m and consequently M must be infinite. Now, let § = inf{p —x: pc M}.
Since « ¢ Ac(S) then § > 0. There exist p, v, -+ € M such that
P, — %< 0+ 0/2". Since s, |0 then there exists ¢ such that n = ¢
implies that s, < 6/2. Also, there exists w such that n = w implies
that p, uses an s, for some k = ¢ (since only a finite number of p;
can be formed from the s, with %k < ¢). Therefore we can write
Py =T + 3,718, Where k, = ¢. Hence
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0 ) 0
w — Sp. — X y — — — X =0 ——=—>0

D kn >p ) = 5 >
which is a contradiction to the assumption that p, is “minimal.”
Thus, we must have x € Ac¢(S) and consequently
(3) U [r, 7+ o)< Ac(S) .

TE€Py_q

To show inclusion in the other direction let x e Ac(S) and suppose

that @ € Usep,, [, T + 0). Thus, either x <0, x = 3\7.;s,, or there
exist 7 and 7' in P,_; such that 7 + ¢ < ¢ < 7’ where no element of
P,_, is contained in the interval [r + o, 7'). Since the first two pos-
sibilities imply that « ¢ Ac(S) (contradicting the hypothesis) then we
may assume that the third possibility holds. Therefore there exists
0 > 0 such that

(4) e=n —9.

Let p be any element of P(S). Then p = 3, s;, + 3.1 s;, for some
m and » where

154<t< <, =r—1<5s1<5H< - <J,.

Thus for n* = 31", s, we have pe[n*, 7* 4+ o). Consequently any
element p of P(S) must fall into an interval [z*, #* + o) for some
w*e P,_, and therefore, if p exceeds & then it must exceed & by at
least ¢ (since p¢[r + o, 7’) and thus by (4) p > x€[r + 0, 7’) implies
p=7n" =&+ d). This contradicts the hypothesis that x € Ae(S) and
hence we conclude that Ac(S)C Urer, ,[%, ® + o). Thus, by (3) we
have Ac(S) = Uxer, 7, # + 0) and the theorem is proved.

THEOREM 2. Let S = (s, 8, ++*) be a sequence of real numbers
such that:

1. s,]0.

2. There exists an integer r such that n < r implies that s, s
not s.x. in S while n = r implies that s, s s.r. in S.

Then Ac(S) is the disjoint union of exactly 27 half-open inter-
vals each of length 3.5, s,.

Proof. By Theorem 1 we have Ac(S) = User, [, © + 0) Where
6=37%.,8 and P, = P8, ++,8). Let m= >4 ,s;, and n'=
>i-18;, be any two formally distinct sums of the s, where 1=
W< o<t £r—1land 15, < -+ <J, =7 —1and we can assume
without loss of generality that # = #’. Then either there is a least
m =1 such that ¢, # j, or we have ¢, =j, for k=1,2,---,» and
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% > v. In the first case we have

—1

U
8, = 2,8, + Em%

1

8

T =

M
_
il

8

—1 oo
85, + 21 8i,,+4 (since s; is not s.r. in S)
k k=1

' 4+ o (since j, = 1, + 1) .

1

v v

In the second case we have

3

8.1'/, + Z sik

1 k=v+1

M:
Me

T = 8;, =

=
I
-
>
I

v -]

> kZ,s,-k + kZ itk (SiDCE 8;, IS not s.r. in S)
=1 =1

=

7' + o (since 4, +1 <1, +1=7).

Thus, in either case we see that = > n’ + ¢. Consequently, any two
formally distinct sums in P,_, are separated by a distance of more
than o and hence, each element 7w of P,_, gives rise to a half-open
interval [z, # + o) which is disjoint from any other interval [7', 7’ + 0)
for # # 7' e P,_,. Therefore Ac(S) = Urer,_,[7, 7 + 0) is the disjoint
union of exactly 2" half-open intervals [z, 7 + 0), we P,.,, (since
there are exactly 27! formally distinct sums of the form >7Zie.s,, &, =
0 or 1) where each interval is of length ¢. This proves the theorem.

We now need three additional lemmas in order to prove the main
theorems.

LeMMA 1. Let S = (s, 8, «++) be a sequence of nonnegative real
numbers and suppose that there exists an m such that n = m
implies that s, <2s,... Then n=m implies that s, is s.r. in S (i.e.,
8y = i1 8uta)e

Proof, If >\7.s, = co then the lemma is immediate. Assume
that 35,8, < . Then

n2m=>sn+k_%n+,,_1, k=128, .-
—_— >__ —_ —_
kz:ll =3 k§_=1 ntk—1 2Sn + 2 k2=.18n+k .

Therefore, s, < 35 Suis, 1.€., .8, i8 8.x. in S.

LEMMA 2. Suppose that k=< (2" — 1)~ and k™ 1is s.r. in H"
(where H" was defined to be the sequence (17*,27", <<+)). Then
(k + 1)~ 4s also s.r. in H™
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Proof.
k<@ — 1)—1:%g21/n —1
. 1y o
(5) (1+ k) > 2

=k =2k +1)".
Since by hypothesis, >.7:: 7™ = k™, then by (5)

Sk — (kDT 2 20k + D)™ — (b )= (b 1)

i=k+2
Hence, (k + 1)™ is s.r. in H™ and the lemma is proved.
LEmMMA 3. Suppose that & = (2¥* — 1)~', Then k™ is s.r. in H,.

Proof.
rzk=—rz@@m"-1)"

1

— L=z -1
=»<1+%)"§2

= Z2r + 1.
Therefore, by Lemma 1, " is s.r. in H".
THEOREM 3. Let t, denote the largest integer k such that k=
is not s.r. in H" and let P denote P(1~™, 27", «+-,t;"). Then
Ac(H" = Ulr, 7w+ 3¢, + B)™)
TEP k=1
18 the disjoint union of exactly 2» intervals. Moreover, t, < (2U"— 1)
and t, ~ nf/ln 2 (where In 2 denotes log, 2).

Proof. With the exception of ¢, ~ n/in 2, the theorem follows
directly from the preceding results. The following argument, due to
L. Shepp, shows that ¢, ~ n/ln 2.

Consider the function f,(x) defined by

(6) £u@) = (8t = L)

for n =2,8,--- and # > 0. Since

k

flay =S (1+ 27 -1

then f.(x) < 0 for sufficiently small # > 0, f,(®) >0 for sufficiently
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large ®, and f,(«) is continuous and monotone increasing for & > 0.
Hence the equation f,(x#) = 0 has a unique positive root x, and from
the definition of ¢, it follows by (6) that 0 < &, — ¢, < 1. Thus, to
show that ¢, ~ n/ln 2, it suffices to show that z, ~ n/ln 2. Now it is
easily shown (cf., [4], p. 18) that for @ >0, (1 + a/n)™ is a decreas-
ing function of n. Thus, f.(an) is a decreasing function of % and
since fy(2a) < o for a > 0 then

lim £, (wn) = lim i( + _’f_)"" ~1

n—oo k=1

—th( k>_n—1

1m0 an
= -1+ i eklo — (ellw _ 1)—1 -1
k=1
since the monotone convergence theorem (cf., [5]) allows us to inter-

change the sum and limit. Suppose now that for some & > 0, there
exist n, < m, < +-- such that x,, > n,(1/ln2 + ¢). Then

0=limf,, (5,) = lim o (m( ;25 + ¢))

— (euizn2+s>‘1 o e |
= (QUatemn _ 1)1 1 >0

which is a contradiction. Similarly, if for some ¢, 0<e¢<1/ln2,
there exist 7, < %, < -+ such that

1
5o <G5 — )

then
0 = lim f, (x,,) = girgfn‘(ni(iq%—z— — e))

— (e(l/mz—e)“'l —D*t-1
= (QUe-—emd _ 1)1 1< 0

which is again impossible. Hence we have shown that for all ¢ > 0,
there exists an =, such that » > n, implies that

n(—li—z——s)émnén(—ﬁ%—ke)

or equivalently
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Therefore, lim «,/n = 1/iln 2 and the theorem is proved.’

The foﬁ;;;ving table gives the values of ¢, for some small values
of n.

n_ t [@" — 1)
1 0 1
2 1 2
3 2 3
4 4 5
5 5 6
10 12 13
100 ? 143
1000 ? 1442

We may now combine Theorem 3 and Theorem A (cf. Eq. (1))
and express the result in ordinary terminology to give:

THEOREM 4. Let n be a positive integer, let t, be the largest
integer k such that k=™ > >7.,(k+ 7)™ and let P denote the set
{Zin, ei57" & =0 or 1}. Then the rational number p/q can be written
as a finite sum of reciprocals of distinct nth powers of integers if
and only if

PeYlmz+ St +07).

COROLLARY 1. p/q can expressed as the finite sum of reciprocals
of distinct squares if and only if

velo g -1)u[L )
=el0,=——-1)uUl1,=).
q 6 6
COROLLARY 2. 9p/q can be expressed as the finite sum of recipro-
cals of distinct cubes if and only if

%f[QC@%~%>U[%&@y—QU[LC@y—%Ju[%ngm>
where £(8) = X, k™ = 1.2020569- - -

REMARKS. In theory it should be possible to calculate directly
from the relevant theorems (cf., [2],[3]) an explicit bound for the
number of terms of H" needed to represent p/¢ as an element of
P(H"). However, since the theorems were not designed to minimize
such a bound, but rather merely to show its existence, then under-
standably, this calculated bound would probably be many orders of

2 In fact, it can be shown that z, has the expansion n/ln2 —1/2 +cn—t+ ---
+ exn—* + O(n—*~1) for any k.
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magnitude too large. Erdos and Stein [1] and, independently, van
Albada and van Lint [9] have shown that if f(n) denotes the least
number of terms of H'= (17, 27, +--) needed to represent the integer
n as an element of P(H") then f(n)~ ¢** where v is Euler’s constant.

It should be pointed out that a more general form of Theorem A
may be derived from [2] which can be used to prove results of the
following type:

COROLLARY A. The rational p/q with (v, q) = 1 can be expressed
as a finite sum of reciprocals of distinct odd squares if and only if
q s odd and p/qe|0, (7*/8) — 1) U [1, ©*/8).

COROLLARY B. The rational plg with (p, ) = 1 can be expressed
as a finite sum of reciprocals of distimct squares which are congruent
to 4 modulo 5 if and only if (¢,5) =1 and

¥ 43 [L Lyl oL [_1_9’_
qe[o’“ 36>U 5 & 4)U{4’“ 9)U 36’“>
where a = 2(56 — 1V 5)7}125 = 552, ((5k + 2)~* + (5k + 3)~%) = 0.43648- - -

It is not difficult to obtain representations of specific rationals as
elements of P(H™) (for small n), e.g.,

% =224+383?4+42+574+62+157+ 182+ 3672 + 60 + 1802,
5 =274 107 1270 4 207 4 507 4 60,
_357_ = 27 4 57 + 107 + 15~ + 16~ + 74~ -+ 111~ + 185~ + 240~
+ 29677 + 44473 + 14807°, ete.!
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