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1. Introduction. Let A be an arbitrary set of positive integers
(finite or infinite) other than the empty set or the set consisting of the
single element unity. Let p(n) = P,(n) denote the number of parti-
tions of the integer n into parts taken from the set A, repetitions
being allowed. Generally, for any integer k we define p*(n) = pi¥'(n)
by the formal power series relation

(1) fulm) = S pPmX" = (1 — X)* 3, p(w) X”

n=0

=1 - X0 @a- X",

Thus p*(n) is the kth difference of p(n) if k& > 0, p(n) itself if k& = 0,
and the (—k)th order summatory function of p(n) if k< 0. P. T.
Bateman and P. Erdos proved (see [1]) that »*(n) is positive for all
sufficiently large positive integer n if and only if A has the following
property which is denoted by P,: There are more than k elements in
A, and if we remove an arbitrary subset of k elements in A, the
remaining elements have greatest common divisor unity. When k is
negative we agree that any set A has property P,. Further, they
conjectured that if A has property P, then

(2) P ()p(n) = O
for an arbitrary k.
Since for a finite set A which has property P, we know that

pEP(m)[pF(n) = O(fn)  (see [1])

i.e., this conjecture is true for such a set A we need only to consider
when A is an infinite set.

The purpose of this paper is to study the asymptotic behavior
of the ratio p“*(n)/p*®(n) under rather strong restrictions on the
regularity of the sequence a, < a, < a; < --- formed by writing the
elements of A in increasing order. Our restrictions are those used
by Roth and Szekeres in [7], namely:

(I) lim 108 MW _ ,
umee  JOg U
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where n(u) = 5_‘11 and 0 < a <1, and

asu

an Gog )= int {3 1| 6, I} — oo as m — o,

where ||« || denotes the distance of # from the nearest integer and
the lower bound is taken over those B satisfying (20.)* < 8 = 1/2.

The assumption (I) is a smoothness assumption on the growth of
the counting function of the set A, while (II) is an arithmetical con-
dition implying P, for every k. Roth and Szekeres showed that many
frequently occurring sets have these two properties. Under these
conditions we shall show that

(3) p* M (m)[p*(n) ~ 0, ,
where o, is defined as the unique solution of

n = >, ale"* — 1),
a€4
Actually this result follows from the arguments of Roth and
Szekeres [7], but we intend to give a direct proof using Hayman’s
method [4]. By a slight modification in the argument used in our
proof one can obtain

(3" p* 0 (n)[p*P(n) ~ o7 (see [7, p. 246)) ,

where p*(n) = p*%(n) denotes the number of partitions of % into distinct
parts taken from the set A and p**(n) is defined by

FHX) = gop*wn)X" =1 — X)* gop*(n)X" = (- X I+ X9,

and where oF is defined by n = 3 ,c.0(e”»* + 1), Probably (3) and (3*)
hold under much weaker conditions than (I) and (II), but we have
been unable to make much progress in this direction.

Furthermore, if we replace (I) by the following more stringent
condition:

I w(u) ~ u*L(u) as 4 — o,

where 0 < @ <1 and L is a slowly oscillating function in the sense
of Karamata [5], then we shall have

(4) p“‘“‘”(n)/p""(n) ~ n’ll(H‘”)Ll(’)’b) as n— o ,

where L, is a slowly oscillating function related to L. This relation
can be expressed in term of de Bruijn’s concept of conjugate slowly
oscillating function [2].
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In any event we can derive under these conditions the Bateman-
Erdos conjecture from (3) or (4), since g, < mw(6n)~"2. See the final
section of the paper.

REMARK. An example of a set A of positive integers having prop-
erty P, for every k but not satisfying (II) is the following: Let A
include all even numbers but very few odd numbers, say only odd
numbers of the form 4*" + 1, where n is a positive integer. Then for
% > ¢ the number of odd numbers in A not exceeding x is less than
log log . Hence for m = 3 we have

m 2
> %ajl = one-forth of the number of odd integers
= among d, G, Gg, *++, G
1
< —loglog a,,
=7 g log
1
< = log log 2m ,
4
so that

(log ) int {5,

1 2
|—2—a,~}——>0 as m— + oo,
A similar example could be constructed by taking the multiples of
any prime p and a very thin set of integers not divisible by ».

2. Outline of proof of (3). Let s =0 + it. Then our function

0

file) = 3 p(me
is analytic in ¢ > 0. Define a function ¢,(s) as that branch of log f,.(e™*)
given by the formula

9u(s) = klog (1 —e™) — 3, log (1 —e™),

where each term is defined by the principal branch of the logarithm.
To this function f,(¢~*) we shall apply the following lemma, due to
Hayman [4], which is the main tool of this paper.

LeMMA 1. Suppose that F(s) = >n_yq.6~"" converges for Res =
>0 and F(o) >0 for all sufficiently small positive o. Define
4, =0 for n<0. Suppose F(s) satisfies the following three con-
ditions for some 6(c), 0 < 0(0) < =:

(a) ¢"(0)— + as oc—0,
where é(o) = log F'(0) ,
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(b) F(O‘ + 'it) ~ F(o-)eitd;’(a')—(t212)¢”(a') as 0 —0
uniformly for.|t| < (o), and
(¢) F(o + it) = o(F(0))/¢" (0)"'* as 0 —0

uniformly for o(c) = |t| = .
Then we have uniformly for all n

e F(0) _ (#(0) +ny
T g o {exs] 26"(0) ]+ oo}

as g — 0.
We shall prove later that our function f,.(¢~*) satisfies (a), (b) and
(¢) for d(o) = d***/®, Thus we will have uniformly for all n

P I ) _ (340 + ny°
(5) p(n)e=" = W{QXP[ 26"(0) ] + 0(1)}
as 0 — 0. Denote by o, the unique root of
(6) gi(0) +n =0

By (11) below this exists because ¢i(0) goes monotonically from 0 to
—o when o goes from +o to 0 through positive values. Then
from (5)

D) _ (1 oS0 )"
p*(n) Pr41(04)
. {eXp[ ($1(0,) — 9i(0,)) _ (¢;c+1(0'n) ¢0(0'n))2] + 0(1)}

2¢3/(0,) Br+1(0,)

(7)

as n— oo,
We shall show in the next section that

(8) B1.(0,) = (@)L + o(1) as m— o ie., as 6, —0
and

(9) (Pk(0,) — $(0))* = 0(9i(0,)) as n— o .
Then from (7)

o P _ (:)()(’;) =1 — e + o(1)) = 0,(1 + o(1)) as m— oo .

3. Proof that ¢}(c) — o as 0 —0 and proof of (8) and (9).
From

44(0) = log fu(e=) = log {(L — e=)* I (1 — &)}
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we have
$u(o) = —ﬁv_—d - > _aei_“v_; )
11) 1—e a4l — e
—C 2,~0a
glo) = —— K| 5@
(1 —e 0)2 P (1 _ e—da)2
Since condition (I) implies that A is infinite, we have
ke—a' a 2 e—o-as
") = — < >
(12) ¢k( ) (1 . 6_0.)2 + % 1 + 6_0- + cee + e-—o‘(a—-l) (1 - 6_"')2
ad . —o-(a—-l)> — oc—0
> (1—e~v)z( btz e o ’
so that (a) holds. And (8) is immediate since
’ . 2 ’
(o) = _m + ¢%(0)
and since
e’ = o{( 7 _(_k + > e"""‘”)} = o(¢},(0)) as 0—0.

(1 — ) 1—e )\ ded

Also from (11)

, i . ke~
(#h(0) — o)) =
and so by (12)
($U0) ~ o) _ Ber g
;c/(o') (——k + é e—cr(a—1)>

as 0 — 0. Hence (9) holds.

4. Proof of (b) for f.(e™°).

4.1. First we obtain a result for (¢| =< o/4 and then specialize
it to obtain (b). For |z — 0| < /4 and ¢ sufficiently small we have

for some constant B
(19) |41 | < Boi(3a) .

For
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” _ a’e e _ ke
|¢k (Z) | - I% (1 _ e—za)z (1 . e—a)a

Z az ije—zaj _ k i je—zj
J=1 J=1

a€4

> azije—(nez)aj + | k| i jo—(men)i
. 2

a€4d J=1
2| I [o~Re*
é ¢k(Re Z) + (T_-—e_T‘)a‘
=< B¢/ (Rez) for a constant B

and
4@ | < Boi(Red) < Boi( o),

since (3/4)d < Rez < (5/4)0 and ¢}/(c) is monotonically decreasing for
sufficiently small o (by an argument like those of the preceding section).
Thus we have a power series development

HE) =Sae—or, |z—o|sd,

where by Cauchy’s inequality and (13)

(o/4)"

Now we integrate both sides of the above power series and we have

$(e) = 44(0) + 5 —Ler(e — o)

Since ¢, = ¢;(0), by integrating again we have

6.(2) = 8,0) + (2 — 0)B4(0) + _;_@ — 0)'4}(0)
(14)

& C
+ n (z__o-n+2.
%m+nm+m‘ )

Now we have for |z— 0| =Z0/4, n =1,
B¢2’(—3—0> B¢;,’(%a>| z—o0

]C,,(z - 0) ln+2 = ——le — 0 }”'*'2 = 0/4

We now specialize the above by putting z = s = ¢ + it with |{| =
/4. Then (14) gives
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(15)  logfile™) = log fu(e~) + itd}(0) — %tw;'(o) + Rs)
where

| Ri(s) | = M 5 1 23¢£’(—2—0>1 ¢

/4 T S ) P

4.2. Now we use the condition (I) to estimate ¢;(c) in terms of o.
First

¢0(0) = log fy(e™") = log 21 (1 — e~oom)-1

(16) . o (0 oo
= Stog (1 — ey = S0 —dn
_ o et _ o ,n(u)
=0 Sa;———l — (ang,u 1)du ago ot du .
Let K(w) = v/(¢® —1). Then we have
si0) = T ECD n(mydu,
Jo u
(17 #) = | Krownwidu,
o' (0) = S:K "(ou)un(w)du .

Here K(v), —K'(v) and K" (v) have positive limits as v — 0 and are
all O(ve™) as v — . Now for any positive ¢ we have from (I) that
if u, is sufficiently large, then

n(u) < u*te for w=wu,.

Here for suitable constants C and D, depending on ¢, we have

$y'(0) = S:K "(ou)yun(uw)du

< SNK"(Gu)u”“‘“du + SuoK"(au)un(u)du
0 0
< gmBrate) rK "(vyvrteredy + Ciuoun(u)du
(18) 0 } 0
= g~ @tate {——(1 + a + e)S K’(v)v‘”"’dv} + D
0

= 0‘-(2+w+e)(1 _I_a +e)(a +8)S“K(v)v—1+a>+edv + D
0
= (a + &)1 + a + s)f'(]_ +a+e)ld +a+ 8)0-—(2+w+e) +D.



100 HWA S. HAHN
Hence
V(@) = O(g=w+ero)

Since from (11)

$:(0) ~ ¢7'(0) as 06— 0,

#(0) = O(=+=) ,
Returning to (15) we have now

| Bi(s) | = O(a=@+=+o)[ ¢ o,
Finally for |t| < (o) = 0™ and for e < /5 we have
[ Bi(s) | = O(c“"=%) = o(1)

Thus (15) yields (b) for fi(e—*) with this value of 0(0).

as 60— 0 ..

5. Proof of (c) for fi(e™). Let us define m to be such that
19) a,<1llo £ apyy .

In the sequel we shall express the magnitudes of ¢} (¢) and f,(e™*)/f.(e™°)
in terms of m and we shall compare them with the help of the con--
dition (II).

Since from (I)

(20) lim 10 Gmis _ i 1088 _ gy, logw 1
moe  log m m-e logm  u—~ log n(w) a
we have from (19)
(21) log o™ ~ % log m as 0 —0 .

Thus it follows from (18) that
(22) log (#%(0))"* = O(log m) .

Now consider

(23) log{M} — log{ [1—e*| N 1 — g-o8 } .

fiu(e™) (1 —e™)F dea |1 — e
Here
[1—eoit|e) _ (1 — eo=it)(1 — e—o+it)
1°g{ 1 — e = 1°g{ 1=y }

k

2

k {1 — 2¢~°cost + e""}
1 .
2 ¢ T =y
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Hence for small o

o= | s B2

élkllogl—_z—?_7§2]k[10ga*1.

Thus by (21) we have for any fixed %
l 1 . e—-o-—it k
Now

log I1 1—e

GEA l 1 . e-—u-a—zta, )

= § S

- % 2 loe {1 T = eii; 112;-:;51@ cos ta,)}
< - %aeaﬁ_z%(l — cos ta)

< - —12- ; lej—_dja?(l _ cos ta)

< — 2(1 — cos ta;) .

1 + e“l)” i=
Write £ = ¢/(1 + ¢)* and ¢ = 278. Then
—-Eg(l — cos 2nfRa;)
- —Eg(l — cos 2| Ba; ||)
- —Egz sin’ 7|| Ba, ||
< -8B 3 || Aa .
Hence by the condition (II) for (2a,) < B8 =< 1/2 we have

(25) I S { _L:i_f__}ﬁ_m as M — oo .
log m iea |1 — g—oo—ita]

From (19) m — o« if and only if 0 — 0. Therefore from (22), (23),
(24) and (25) we conclude now that for ma,' < |t| < 7 we have
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Lfe@™) [ srrg wyyise
e ($x(0))

= exp {log %;;;' + log (#(@)"} — 0 as 0 —0.
k
On the other hand, if d(o) < |t| < 7a;!, we have
0(0)|2r) = |B| = |t]/(27) = (2a,)" .

Thus if € is a given positive number less than a/(8a + 40), then by
(20) 07! =< apyy < Mm@ for sufficiently small ¢ and so

m m m
3118051 = £ 3 a3 2 03(0)* 3400
Jj= Jj=1 Jj=1

ol 1+e)

g 013(0.)2§ w(z/m)(l—s)dm 2 025(0-)20-—2[(1—8)/(1+e)]—[wl(1+e)]

0
z 620-——(m/5)+4s[1+(a/5)] g czo.—m/m

for sufficiently small ¢, where the constants ¢, and ¢, depend on e.
Now from (21)

m
jZﬂ || Ba; ||* c,0~%

— as 0—0.
log m 2alog ot

As in the previous case this implies that in the case when d(0)/(27)
=8| = (2a,)™* also (c) holds. ’

Thus we have completed the proof of (c) for d(g) < |t| = 7. Note
that the uniformity in (b) and (c) is clear from our proofs.

6. Application to the Bateman-Erdos conjecture. In this section
we shall estimate o, in (8) in term of » under each of the conditions

@) and (I*).
6.1. Under (I), for given any positive ¢ we have
u* = n(u) < utt for large w .
Recall that o, was defined by (6):
n + ¢i(0,) = 0.
Now from (17)

61(0,) = S:K’(anu)n(u)du i

Hence
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_SNK'(O',,u)uw—Edu <n = —SwK’(tf”u)u”“du .
0 0

Then a computation similar to (18) gives

(@—9lI'l+a—ef(l+a—eo;t?
Sns=@+el'(A+ a+e)d + a+ g)o,tote |

Thus we have

logn = —(1 + a + o(1))log 7, as n— oo ,
Hence

(26) g, = pYO+e+o)] .

Furthermore, we have always n(u) < % and so

n < —SwK’(o,,n)udu = — 012 S“K'(v)vdv
0 2 Jo

@) = ; %2 (see (18)) .

1
o,

Hence always o, < (r/V 6)(1/V/n). Since we obtained (3) under the
conditions (I) and (II), under these conditions

@7 P () pP(m) < (1—/% 4 e)_v_l7

for sufficiently large n. Of course this is weaker than (26) when
a < 1. However note that (27) implies the Bateman-Erdos conjecture
under these conditions. In fact it would be reasonable to conjecture
that (27) holds for any set A of positive integers.

6.2. Under (I*) we have
n(u) ~ u*L(w) asu—o 0<a=s1l).
LEMMA 2. The condition (I*) implies
—i(0) ~ al'(l + a)l(1 + a)(1/o)**L(1/o)

as 0 — 0.

Proof. Suppose L is defined on [a, ), & > 0. Choose 0 < 7 < a.
Then by Karamata’s representation theorem for slowly oscillating
function [3] there exists b = a such that

0 < n(uw) < 2u®L(u) , u=b
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and
1/x\™ L(x) x\Y
E(—u~> <—L—(—uT<2(7[> forezu=b.
Now from (17)
61(0) 3 S:K’(au)n(u)du

@joy**L(Jo)  (1jo)*+*L(1/o)
oSZK’(ou)n(u)du + S;K’(v)n(v/a)dv

(28) (1/0)*L(1/0)
bn(u)du ) .
=0 _i____ n(vjo)L(v]o) N
( (1/0.)1+WL(1/0') + Sbo‘ (,v/o.)aL(v/o_)L(llo_)K ('U)'v du
_ 1 o
B O(m) + So 9(v, 0)dv
where

(0 if v»<bo,

00,0) =|__n(jo) _ L0o) oy ,
{('vlo)”L(v/o) L(1/o) Ky if v=bo.

For fixed positive v

lim g(v, o) = K'(v)v* .

Also if ¢ £1/b and v = bo we have

L(v/o) 20~ ifv=s1

L(1/o) 207 ifv=1.
And if v = bo,

0< n(v/o)

(v/0)*L(v/o) )
Thus | g(v, 0) | = h(v), where

4| K'(v) |[v*~ ifv=s1

h(v) = {4| K'(v) [0+ ifv=>1.

Since
S”h(v)dv <,
0

the Lebesgue dominated convergence theorem gives
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a—0 J0

limrg(v, o)dv = S:K’(v)v"dv = —al'l + o)1 + @) (see (18)) .

Therefore from (28) we have since

1 _
ot =W w0
$4(0) = —al'(l +a)ll+a).

B oy Lt
Thus we have now
n = —¢y0,) ~ al'(1 + a){(1 + a)L(1/o,)(1[o,)** as m— .,
Hence
(29) 0, ~ n " Nal'(1 + a)l(1 + a)L(1/o, )} as n— oo ,

To obtain (4) from (29) we introduce the following result, due to de
Bruijn [2],: If M(x) is a slowly oscillating function, then there exists
a slowly oscillating function M*, called the conjugate of M, such that

M* (@M (%)) M(x) — 1 28 & — oo
M(xM*(x))M*(@@) — 1 a8 I — oo
Moreover M* is asymptotically uniquely determined.
Put
M(z) = {al'(1 + a)¢(1 + a)L(x)}!*+ |
Then

M*(M(1/o,)1/0,)M(1]0,) — 1 as m— o .
But since from (29)
M*(M(1/o,)1]0,) ~ M*n'*+) ,
we have
M*m*)M(1/o,) — 1 as m— oo,
Thus we have from (29)
0, ~ nY S J* (g Atar)—1 as 7 — oo .

Since by the property of a slowly oscillating function M*(n!/®+*)-1 ig
a slowly oscillating function of %, by letting

Ll(n) — M*(n1/(1+w))—1
we obtain (4) from (3) and (29).



106 HWA S. HAHN

Note that
lim sup Ly(z) = {al"(1 + a)¢(l + a) lim sup L(z)}/*+
g T+

and similarly for lim inf. This remark gives (27) from (4), but only
under the present more stringent conditions.
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