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1. Introduction. In [6] Wald gives a metric definition of the
curvature of a metric space M at a point pe M. He proves that a
Gauss surface (a bounded portion of a surface of the kind studied in
classical differential geometry, cf. [6, p. 33]) is characterized among
all compact and convex metric spaces by the property of having
curvature (in his sense) at each of its points. Recent developments
in metric differential geometry include the studies of Alexandrov [1; 2],
Έusemann [3], and Rinow [5] concerning spaces of bounded curvature.
Rinow's concept of "region of bounded Riemann curvature" suggests
another way to define the curvature of a metric space at one of its
points. We introduce this definition here. Our study establishes a
firm connection between the theory of Wald and the more recent work
of Rinow and thereby indicates how Rinow's concept leads in a natural
way to a formulation of Gaussian curvature for surfaces.

2* Definitions. For each real number k, positive, zero, or negative,
let Sk denote the convex two-sphere, the euclidean plane, or the
hyperbolic plane of curvature k, respectively. A metric quadruple is
said to have an imbedding curvature k if it is congruent with a
quadruple of Sk.

DEFINITION. A metric space M has at an accumulation point p
the Wald curvature K(p) if (i) no neighborhood of p is linear, and
<ii) corresponding to each ε > 0 there is a p > 0 such that each
quadruple Q of points of U(p p) has an imbedding curvature k(Q)
with I k(Q) - K{p) | < e .

It has been shown [6] that a nonlinear quadruple (distinct points)
has at most two imbedding curvatures, while if it contains a linear
triple it has at most one. This led Wald to suggest a weakening of
his original definition by restricting its application to those quadruples
which contain a linear triple (see [6], p. 33). The curvature thus
•defined will be called the curvature K'(p). (A characterization of Gauss
surfaces has recently been obtained using the curvature K\p) [4]).

According to Rinow [5, p. 316] a region G of a space M with
intrinsic metric is a region of Riemann curvature ^ k if:

( I ) Each two points of G are joined by at least one (metric)
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segment of M (an arc whose length is less than or equal the length
of any arc joining its endpoints).

( II ) Each three points of G have an isometric copy in Sk.

(IΠR) Let a,b,ceG, b Φ a Φc, and let S(a, b) and S(a, c) denote
segments joining α, b and α, c, respectively. Suppose x e S(a, b) and
y e S(a, c). If A, B, C denotes an isometric copy of α, 6, c in Sk, and
if X, Ye Sk such that α, x, b & A, X, B and a,y,c ** A, Y, C, then
xy f§ XY.

Similarly, G is a region of Riemann curvature ^ k if G has prop-
erties I, II and IΠR where IΠR is the same as ΠIR with ^ replaced
by ^ .

A connection between this and the work of Wald (i.e., the curva-
ture K'(p)) arises if we 'localize' the above definition as follows:

DEFINITION. A space M with intrinsic metric has at an accumu-
lation point p the curvature R(p) if (i) no neighborhood of p is linear,
and (ii) corresponding to each ε > 0 there is a p > 0 such that U(p p)
is both a region of Riemann curvature ^ R{p) + ε and a region of
Riemann curvature ^ R(p) — ε.

Finally we state two lemmas, found in [6], that will be needed.
in the proofs which follow.

LEMMA 1. If p, a,b are non-linear points of Sk and if c is a
point in the interior of Zbpa such that cp = bp, then ac < ab.

LEMMA 2. Let a', 6', c', d' be a non-linear quadruple of Sk> with
a'br + bfcf = α'c', and let a", 6", c", d" be a quadruple of Sk>,, where
k' < k". If α', δ', c' ** α"δ"c" then a'd' = a"d" and c'df = c"d" imply,
Vd' < b"d".

3* A comparison of the curvatures K'{p) and R{p). We now~
prove two theorems which illustrate the great similarity of the curva-
tures K'{p) and R{p). Here M denotes a space with intrinsic metric.

THEOREM 3.1. If the curvature K'{p) exists at peMand if p has*
a neighborhood in which each two points are joined by a segment of
M, then the curvature R(p) exists at p, and K'{p) = R(p).

Proof. Let ε > 0, and let U denote a neighborhood of p whose
radius p is chosen small enough that:

(1) Each two points of U are joined by a segment of M.



ON CURVATURE OF A METRIC SPACE AT A POINT 197

( 2 ) Each quadruple Q of points of U which contains a linear
triple has an imbedding curvature k(Q) where (i) \k\ < π2l(16ρ2), and
(ii) kr <k< k", where k! = K'(p) - ε and fc" = K\p) + ε.

( 3 ) Each three points of U are congruent with three points of

In order to prove the theorem it need only be shown that U has
properties IΠR and IIIR for k! and fc", respectively. First we show
that U contains all the points of any segment joining two of its
points. Let r, seU. If p, r, s are linear then it is clear that every
point on a segment S(r, s) joining r and s is in U. If p, r, s are not
linear, then let t e S(r, s) and suppose that pt ^ p. This implies there
exist points ylf y2 e S(r, s) such that yx Φ y2 and pr < pyλ = py2 < p.
Since p, y19 y2 are linear, p, r, yu y2F& p*,r*, y?, yt where the 'starred'
points are in an Sk with \k\ < π2/(16ρ2). But then p*r* < p*yf, and
this is not possible for k ^ 0; for k > 0, p*r* < p*y? is only possible
if the isosceles triangle whose vertices are £>*, y*9 yt has altitude
^ π/(2τ/ k), which contradicts (2). Hence pt < p and te U.

Now let α, δ, c be points of U with b Φ a Φ c, and let x e S(a, b)
and y e S(a, c), where S(α, 6) and S(α, c) denote segments joining α, 6
and α, c, respectively. Since U contains all the points of a segment
joining any two of its points, x and y are in U. Hence by (2), α, x, b, c
and α, x, y, c have imbedding curvatures kx ̂  &' and k2 ̂  fc', respec-
tively. Also, since k! < A;", it follows from (3) that α, 6, c has an
isometric copy A', Br, C" in Sk>. Thus, if X ' and Yf are points of Sh,
such that α, a?, b ̂  A', X', β ' and a,y,bρ& A', Y', Br we have, by
Lemma 2, Xf C ^ α c. Let X* denote a point of Sk> such that
X * C = xc and X*A' = a?α. It follows from Lemma 1 that ΔX*A'C ^
AX'A'C and hence X*Y'^XΎ'. But by Lemma 2, X*Y'^iηi
since α, a?, ̂ /, c has imbedding curvature fc2 ^ ik'. Therefore I T ' ̂  xy
and ΠIR is satisfied. In the same way it can be shown that IΠR is
satisfied in U for k".

THEOREM 3.2. If the curvature R{p) exists at peM, the curva-
ture K'(p) does also, and Kf{p) = R{p).

Proof. Let ε > 0 and let U(p p) be a region of Riemann curva-
ture ^ R(p) + ε and j£jt(P) - e. Put V = R{p) - ε and k" = Λ(p) + ε
(choosing /> < π\(Wk" ) if &" > 0). If Q = (p19 p2, p3, p4) denotes an
arbitrary quadruple of U(p p) for which pλp2 + p2p3 = pxpZ9 and if
0?ί, Pίy Vz, Pi) and (p[\ p2f p", p") denote quadruples of Sk> and Sk»,
respectively, such that PiPj = p\p'ά — pf/p" for all index pairs {i, j)
except (2, 4), then by ΠIR p2p± ̂  p'2p[, while by IΠ^ p2p4 ^ p2pϊ. It
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follows that there is a number k between k! and k" for which Q has
imbedding curvature k. Since both k! and k" have limit R(p) as ε—>0,
Λf has curvature K'{p) at p where K'{p) ==

4* Remarks* Wald proved that if ilί is a Gauss surface then
the curvature ίΓ(p) is the Gauss curvature of M at p [6, p. 42]. It
is clear that for p e M, K{p) = K'{p), and by Theorem 3.1, K'\p) =
R(p). Hence the curvature R(p) is the Gauss curvature of M at p.

There is a distinction between the curvature K'{p) (or R{p)) and
the Wald curvature K(p). Wald proved that the existence of the
curvature K(p) at each point of a compact and convex metric space
implies that the space is two-dimensional [6, p. 31]. The curvature
K'{p) may exist in spaces of arbitrary dimension (e.g. spaces of con-
stant Riemannian curvature). While it is the Gauss curvature for
surfaces the significance of its existence in spaces of higher dimension
is not known.
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