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1. Introduction. In a previous paper [3], the author has presented
the basic concepts and definitions for semi-discrete analytic functions.
These functions are defined on two types of semi-lattices (sets of lines
in the @y-plane, parallel to the x-axis)—one of which leads to a sym-
metric theory. We will concern ourselves here only with the sym-
metric case. These functions satisfy the following defining equation
[3] on a region of the semi-lattice

1.1) ?ia(;—) — [f(z + ih/2) — f(z — ih/2)]/ih ,

where k > 0 is the spacing of the semi-lattice. For convenience, we
will repeat the definition of the symmetric semi-lattice and its as-
sociated odd and even semi-lattices. A grid-line, a,, is the set of
points in the xy-plane such that y = mh where A > 0. The union
G(2k, h) of the a, for m =k (k =0, =1, +2, -..) is called the even
semi-lattice; the union G2k + 1,h) of the a, for m = (2k + 1)/2 is
called the odd semi-lattice. The semi-discrete z-plane is the union of
G2k, h) and G2k + 1,k). It will be denoted by L(h). Additional
concepts such as domains, paths, path-integrals, etc., are defined in [3].
The following notational conventions will be employed:

(1.2) fi =f(@ + thk) = fi(@) ,

and the abbreviation SD will be used to stand for semi-discrete.

2. Sub and super harmonic semi-discrete functions. In the
continuous case, it is well-known that if a function u(z, y) is defined
over a region R of the plane and if, further, 4*u) = 0 for all (x, y) € R,
where 4* denotes the two dimensional Laplacian; then wu(x,y) cannot
have a maximum on the interior of R. Such a function is said to be
sub-harmonic in R [2]. Similarly, if the function w(x, y) defined on
R satisfies the equation 4*(u) < 0 for all (v, y) € R; then u(x, ¥) cannot
have a minimum on the interior of R. Such a function is said to be
super-harmonic in R [2]. An analogous result holds for semi-discrete
functions which are defined on domains of either the even or odd semi-
lattice. To be specific, we will consider functions u(z, y) defined on
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domains of G(2k, k) and introduce the notation

(2.1) (a) hEu(x, y) = u(m, ) + h’) - U(x, y) ’
(b) hEu(®, y) = w(®, y) — u(@,y — h) .

The semi-discrete Laplacian operators for G(2k) is then

(2.2) ru(s, y) = ﬁua(:;_y) + EBu(z, v) .

THEOREM 2.1. Let u(x, y) be a SD-function defined on a semi-
discrete domain R of G(2k, h). If Fu = ¢ for all (x, y) € R, then on R

(2.3) we,y) = M,

where M 1is the supremum of u(x,y) on C, the boundary of R.

Proof. The proof of this statement is obtained by a suitable
modification of the proof for the “weak maximum theorem” established
by Helmbold [1] for semi-discrete harmonic functions. Let C denote
the boundary of the SD-domain R of G(2k, k), let u(x, y) be a SD-
function on R such that Fu = 0 for all (z, y) e R, and let M’ denote
the supremum of u(x,y) on K. Assume that u takes the value M’
at a point (¢, nh) of the interior R°= R ~ C of R. If the adjacent
points (¢, (n &= 1)h) are points of R°, 0*u[6x* = " will be continuous
at (¢, nh) and further «,(t) <0. By assumption Fu,(t) = 0 which,
together with the previous remarks, implies that

(a) Un(t) = Uns(t) = U, o(t) = M" .

This argument may be repeated for the sequence of points (¢, (n £ 1)h),
(t, (m = 2)k), ++- until a point (¢, ph) is reached such that one of its
adjacent points is a point of C. If w, is continuous, the proof is
complete. Otherwise, since %, is then at least piecewise continuous,
integration of Fu, = 0 shows that for some range of values of ¢ > 0

(b) wy(t + €) — uy(t) = eh™*{2u,(6) — Up(60) — u,(0)}

where t <0 <t +e. Since u, =M’ is a maximum, the left side of
(b) is negative. Hence, the bracketed term is negative. Taking the
limit of this term as ¢ — 0, ¢ > 0 shows that

(c) 2M" = Upra(EY) + Up—a(t) .

Similarly, we obtain

(a) 2M' = Upia(E7) + Upa(t7) o

Addition of (c) and (d) shows that M’ < M where M is the maximum
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value of u(x, ¥) on C.

In an identical manner, we establish the following result for
super SD-harmonic functions.

THEOREM 2.2. Let u(x, y) be a SD-function defined on a semi-
discrete domain R of G(2k, h). If Vu < 0 for all (x,y)e R, then on R

(2.4) ww, y) = m,

where m is the imfimum of w(x,y) on C, the boundary of R.

3. Limit theorem for semi-discrete analytic functions. A SD-
function £(2) of the complex variable z = # + 4nh which is continuous
and single-valued on a SD-domain R of L(k) is said to be SD-analytic
if it satisfies (1.1) for all points z€ R [3]. In addition, if we write
f=u+ tw, then Fu = Vv = 0 on R; that is, # and v are SD-harmonic.

Let us suppose that L(kh) is superimposed upon the continuous z-
plane, denoted by L,, with their # and y axes coinciding. Let R, be
a simply-connected finite domain of L, whose boundary is a Jordan
curve. A covering set of rectangles, Q,, is defined as follows,

Qe =1{( v :a, =x =B (kh —h) =2y < (kh + h)},

where «, is the least value of @ in R taken on the strip kh — h <
2y £ kh + h, and B, is the greatest value of & in R on this strip.
By construction, each point of R, is also a point of @ = U, Q.. The
intersection of @ with L(k) forms a SD-domain, R(k), which approxi-
mates R,. We consider the sequence of SD-domains {R(k;); h, > hy >+ ++}
obtained by the above procedure upon successive refinements of the
semi-lattice retaining at each step the lines of the previous semi-
lattice. In the limit, R(k;) — R,. It is shown in [3] that a SD-
analytic function is completely determined in R(k) by its values on
C(h), the total-boundary of R(h). Therefore, let us assume that an
interpolation scheme is established to provide such boundary values
for a SD-analytic function f*(z) on R(k) from the boundary values
of an analytic function {(z) on R, such that these approximate boundary
values tend uniformly to the true boundary values. We consider the
sequence of SD-analytic functions {f*i(2)} so determined on {R(k;)}
and will prove that as h; — 0, f*9(z) — {(?).

THEOREM 3.1. Let R be a domain whose boundary C is a Jordan
curve and let R’ be a subdomain of R which s bounded by a Jordan
curve C' C R. Consider the set of all possible semi-lattices G (2k, h)
parallel to the real axis of the z-plane. Consider also the set of all
SD-functions u'™(x, y) which are uniformly bounded, |u| < M in R,
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and which satisfy in R the equation Fu = 0. Then, for h sufficiently ]
small, there exists a constant M’ such thaot

au(h)
o

=M and |[Fu™| =M

for all (x,y)e R.

Proof. The proof of this statement follows the proof given by
Fellow [4] for the discrete case. The sub-domain R’ can be covered
by a finite number of rectangles contained in R and each of these
rectangles can be inclosed in a larger rectangle also contained in R.
Following the argument of Feller [4], it will be sufficient to consider,
for an arbitrary ¢ > 0, the two concentric rectangles

R={wy:le]/<a—20lyl<b
R ={=y:|z|<a—09|y|<b—25/3},

where b is a multiple of the gap &, and & < d/3.
To prove the assertion, we shall show that the function

¥, 1) = (2L 0@, ) + Clue, v) + we, v + b) + 0@, ¥ — )
where O(z, y) = (& — a?)*(y* — b and C is a large positive constant,
to be determined later, satisfies the inequality F(y) = 0.

Assume for the moment that this has been established. Then,
by Theorem 2.1, it follows that « attains its maximum value on the
boundary. However, by definition, @ = 0 on the boundary and thus
in the entire rectangle

0 < y(P) < 3CM?

where M is the uniform bound on #. Since the second term of + is
nonnegative, we may conclude that for all Pe R’

(ﬂ)”g 3CM:|0 < 3CM*/(3/3)°
0w

[since for small 9, @ = (6/2)*9/3)* = (9/3)"].

Since (0/3)® > 0, taking the last expression for M’ establishes the
theorem, subject to showing that F(y) = 0. Only the outline of this
calculation will be presented. The complete sequence of steps follows
the argument given by Feller [4] using the differential rather than
the difference operator on .

Calculation of V4 using the fact that w is SD-harmonic [as is u']
gives
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V(¥) = (@)7 (@) + o[2(w") + (Ew') + (Eu')]

+ O'(4w'u") + EQ[uiEw + w Eu']

+ EO[ulEw + wEw] + C[2(w) + (Bu)® + (Fu)!]

+ Cl2(u))* + (Bu)® + (Bu,)* + 2u")* + (Bu_))* + (Bu_,)"]
where %, = u(x, ¥y = h). Since |80/0x| = 4| x(y* — b*) |V @, a constant
M exists such that for all points of R|@ | < A1V @. Similar bounds

exist for E® and E@. Further, in R, /(@) is bounded. Accordingly
we assume that M\ is so chosen that on R

[7@)| <N, |@|<AVO, |EO|<\VO, |E0|<AVD.

(a)

For an arbitrary ¢ > 0, we see that
’ 2
Iu’u”@’| < <_u__> + 62)\,2@(71'")2 .
€

With such bounds established for the various terms which appear in
(a), the following inequality is obtained.

V() = [(Ew')? + (Ew')* + 2(u")]@(1 — 26*\%)
+ 2(w'’[C — 8/e’] + C[(Buw)* + (Eu)* + (Eu,)’]
+ C[(Ew)* + (Bu_,)* + (Bu_))] + (w))[2C — 1/¢’]
+ (ul)[2C — 1/¢7] .

)

Selecting ¢ so that e2\* = 1/2, the first term on the right in (b) vanishes.
Finally, choosing C = 3/¢?, the remaining terms on the right in (b)
will be positive. That is, F(y) = 0.

THEOREM 3.2. Let {u(x, y)} be the set of uniformly bounded
SD-functions comsidered in Theorem 3.1. This set is a family of
equi-continuous functions on R.

Proof. In Theorem 3.1 we established the existence of a uniform
bound for the set {ou'™/ox} and also {Eu™}. Let M denote this bound.
(1) Given € > 0, let P, Q be two points on a line of the semi-lattice
such that PQ < ¢/M; that is, | @, — @,| < ¢/M, where &, denotes the
w-coordinate of P and @, denotes the x-coordinate of @. Then

! SzP ou™

|u(h)(P) _ u(h)(Q)‘ — l o dt‘ < [Mg(xp _ wQ)z]uz <e.
Q

(2) Given ¢ > 0, let P, Q be two points of R which lie on a vertical
line in R such that |y, — y,| < ¢/Mh.

y=yp
S, Bu®

y=1q

w(P) — u™(@] = b
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Thus,
[uM(P) — u™(@Q) | = |Yp — Yol MR < ¢ .

(8) Given ¢ > 0, let P, @ be two arbitrary points of R such that
PQ < 8(). Let P’ lie on the same vertical line as P and have the
same y-coordinate as Q; i.e., P’ = (¥p, ¥,). Then

Iu(h)(P) —_ u(h)(Q)I é ,u(n)(P) — u(h)(PI)] + Iu(h)(Pl) . u(h)(Q)' .

Application of the two previous cases completes the proof.

By Theorem 3.2, if {f™ = 4™ 4 4™} is a set of uniformly bounded
SDA functions, this set is a family of equicontinuous functions which,
by Kellogg [2], contains a subsequence converging uniformly in R’ to
a continuous limit. Since R’ was an arbitrary closed sub-domain of
R, we can choose a sequence of such regions R’ < R” C ..+ C R whose
sum is R and find successive subsequences of f™, £ ... which
converge in each of these regions to a continuous function. The
resultant diagonal subsequence will converge uniformly to a continuous
function in all of R. Since successive differences and derivatives of
SD-harmonic functions are again SD-harmonic, the arguments in Theo-
rems 3.1 and 3.2 can be repeated to show that there is a subsequence
of the final subsequence whose first derivative and first difference ratio
also converge in R. Thus, we can find a final subsequence which will
have an arbitrary number of successive derivatives or differences which
converge in R, Denote this final convergent subsequence by {f{*} and
let &(2) be the continuous function in R to which it converges.

Let C be a rectifiable curve in L,. By the construction of @,
each point of C is a point of @. Consider a rectangle @, of @ which
contains a segment C, of C. To be explicit, we will assume that C,
intersects @, N L(k) at the three points p, = (%, h(k — 1)/2), p, =
(x5, RE/2), and p, = (%, h(k + 1)/2), and that the positive direction is
from p, to p,. The remaining possibilities can be treated by suitable
modifications of the following discussion. On @, N L(k), three SD-
paths may be defined. The wupper SD-path consists of the points p,,
(¢, hk/2), and the line segment from x, to x, with y = h(k + 1)/2.
The lower SD-path is the line segment from x, to «, with ¥y = h(k — 1)/2,
the points (&, hk/2), and p,. The mixed SD-path consists of the line
segment from «, to x, with ¥y = h(k — 1)/2, the point p,, and the line
segment from «, to ¥, with y = h(k + 1)/2. At least one of these
SD-paths must lie within R(#) and will be chosen to be the SD ap-
proximation of the segment C,. The SD-Cauchy theorem [3] shows
that it is immaterial which SD-path is chosen if more than one of
these approximating SD-paths lies within R(k). The SD-path on R(k)
which approximates C is the union of the SD-paths chosen to approxi-
mate its segments, C,.
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THEOREM 3.3. Let {(2) be a continuous function on a domain R
and let C be a rectifiable [or Jordan] curve which is contained in
R. If C, ts a SD-path contained in R, which approximates C, then

3.1) lim SG L(2)52 = SOC(z)dz )

h—0

Proof. By the definition for SD-path integration [3],

N—1

Tpt1 L =2
|00 =3 |76 0t + 05 Gural@nn)

/o

where C, is a SD-path joining 2z, = ®,, + ¢M and 2z, = &y + tN. We
note that as »— 0, so must |#, — #,;,|— 0. Since ¢ is continuous,
there exists a value )\, where ¢, <\, < ®,,, such that

|6 = 5, o — @JC00) + ih 3] Corum (@)

As h— 0 the right side of the above converges to the value of the
path-integral of the continuous function { along the path C.

THEOREM 3.4. Let R(h,) denolte a sequence of semi-lattices on a
domain R such that h,— 0, and let "% be semi-discrete analytic on
R(h,). If the collection of these f™¥ is uniformly bounded in R,
then it contains a subsequence that converges everywhere in R to a
function £(z) that is analytic in R.

Proof. This subsequence is the final subsequence obtained in the
previous discussion. Let C denote an arbitrary closed rectifiable path

in R and let C, be a closed SD-path on R(h,) which approximates C.
Then
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(2) lim§ e =§ te)dz

k=0 JOp, g
where {f{*} is the subsequence which converges to {. To establish
(a) we consider

(b) | § Fno - §0c(z)dz| < l { (- c)az| + [ fohcaz ) Cdz‘ :

Since f{* — {, given € > 0 there exists d,(¢) > 0 such that the first
term on the right side of (b) is smaller than ¢/2 provided h, < 6.
Similarly by Theorem 3.3, there exists d,(¢) > 0 such that the second
term on the right side of (b) is smaller than &/2 provided A, < 0..
Thus, on letting 6 = max (4,, J,)

©) lﬁhﬁ"k’éz — j;ocdz’ <e,

provided k, < 0. This establishes (a). However, since f{"* is SDA
for each h,, the left side of (a) is always zero. Thus

@) j;aC(z)dz —0.

Since Cis an arbitrary closed rectifiable curve of R and { is continu-
ous, by Morera’s theorem ¢(z) is analytic in R.

To complete the discussion we must show that the limit function
C(z) = U(z) + 1V (z) of the chosen subsequence {f{**'} satisfies the given
boundary condition { = y(s) on C, the boundary of R. It is sufficient
for this purpose to consider the real-valued function U = Re{(} and
show that U= Re{y(s)} on C. Let @ be a fixed point of C. By
hypothesis we can construct a circle lying outside C and intersecting
C only at the point @, see Feller [4]. We denote the center of this
circle by A, its radius by p, and let P denote an arbitrary point of
R whose distance from A is 7.

For an arbitrary ¢ > 0, we define the functions [4]

_ 1_1
(3.2 UP) = F@ + ¢+ K(2 ~1),
and
_ _ 1 _ 1
UP) = F@ — ¢~ K(5~ ),

where F'= Re{y} and K is a positive constant to be determined later.
On any semi-lattice

(3.3) FPU(P) = —K[r*+ 0R)] <0,

and
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FU(P) >0

in R provided that & is sufficiently small. Now if #(P) is a solution
of the differential-difference equation Fu = 0 for the semi-lattice, by
(3.3) the function U,(P) — u(P) is SD super-harmonic for PcR.
Accordingly, by Theorem 2.2, it assumes its minimum on C. Similarly,
the function U,(P) — w(P) is SD sub-harmonic and by Theorem 2.1
assumes its maximum on C.

The argument given by Feller [4] now applies directly. We con-
sequently establish that

1}@ UP)= F@Q),

and

lim U(P) = F(Q)

P—Q

which completes the proof.
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