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EXTENSIONS OF SUBADDITIVE FUNCTIONS

RICHARD G. LAATSCH

l Introduction* A function / defined on a set ϋ o f real numbers
is subaddίtive on Hif f(x + y) ^ f(x) + f(y) for all x,yeH such that
x + ye H. If the inequality is reversed, / is super additive. This
paper considers several problems in the extension of subadditive and
monotone subadditive functions to domains of which the given H
is a proper subset, and some related problems. First, extensions
of a function from the set / of all nonnegative integers of the set
E = [0, oo) will be discussed. Then extensions of functions from E to
the set of all real numbers and extensions from an interval [0, α] to
[0, 6] (b > a) and to E will be discussed. This last discussion will
emphasize the maximal extension first defined by Bruckner [1] in the
superadditive case, will treat the problem of convergence of sequences
of such extensions, and will study the operator properties of the ex-
tension. Finally, an example will be considered which is relevant to
a problem in extremal elements of cones of functions.

2 Extensions from, the integers* Let / be a subadditive function
defined on J. It has been shown that the polygonal extension, F, of
/ to E, obtained by joining consecutive points (n,f(n)) of the graph
of / by straight line segments, is subadditive on E. [1]. It is easy
to show that the left-continuous step function extension G, defined by
G(0) = /(O) and G(x) = f(n) for all x e (n - 1, n] (n = 1, 2, . •) is sub-
additive on E when / is nondecreasing. These two extensions appear
as the extreme cases of the class of extensions described in the follow-
ing result.

THEOREM 1. Let f be a nondecreasing subadditive function on
J. Let g be a nondecreasing concave function on [0,1] with g(0) — 0
and g(l) = 1. The function F defined on E by

F(x) =/([*]) + {/([* + 1]) -f([x])}g(x - [x]),

where [x] is the integer x — 1 < [x] ^ x, is subadditive and non-
decreasing on E.

Proof. The function F is obviously nondecreasing. To show
subadditivity, let x = m + u and y = n + v, where m,neJ and
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u, v e [0,1). If u + v = h ^ 1 and #(w) + g(v) ^ 1, then # is subaddi-
tive on [0,1] since g(x)/x is nonincreasing there, and

F(x + y) ^ /(ra + n) + {/(m + w + 1) - /(m + w)}{#(̂ ) + g{v)}

^ {/(m) + /(Λ)}{1 - ff(w) - flr(ι;)}

+ {/(m + 1) + /(Λ)}ff(w) + {/(m) + / ( * +

^ /(m) + {/(m + 1) - f(m)}g(u) + /(n)

+ {/(* + 1) - f(n)}g(v) = F(x) + F(y) .

If #(w) + g(v) > 1, assume notation such that /(w + 1) — f(n) ^
/(m + 1) - /(m). Then {/(n + 1) - /(w)}{ff(w) + g(v)} +f(n) ^ f(n + 1),
and it follows that

F(x + y)^ f(m + n + 1) ^ /(m)

+ {/(n + 1) -/(n)Hff(w) + g(v)} + f{n)

ik f{m) + {f(n + 1) - f(n)}g(u) + f(n)

+ {/(n + 1) -f(n)}g(v) ^ F(x) + F(y) .

If u + v = l + h>l, the concavity of g yields the inequality g(h) ^
+ fir(^) - 1. Then

F(x + y) ^ / ( m + n + 1)

+ {/(m + n + 2) - f(m + n + l)}{g(u) + g(v) - 1}

^ {/(m) +f(n + 1)}{1 - fir(tt)} + {/(m + 1) + /(n)}{l - g(v)}

+ {f(m + 1) + / ( Λ + l)}{g(u) + flr(t;) - 1} = F(x)

Simple examples show that the theorem fails if either hypothesis on
/ or g is removed.

A similar but much simpler proof can be given for the following
construction of periodic subadditive functions, which is suggested by
the subadditivity of | sin α? |.

THEOREM 2. Let g be concave and nonnegatίve on [0,1). The
extension, F, of g to E defined by F(x) = g(x — [x]) is subadditive on
E.

The concavity of g is not necessary, even if g(0) = g(l) = 0, since
the polygonal extension of the function defined on {0,1,2, 3,4} by
/(0) =/(4) = 0, /(I) =/(3) - 2, and /(2) = 1 can be extended to E
as a periodic subadditive function.

3 Extensions from E to R. It is the purpose of this section to
mention some results on the extension of a subadditive function /,
defined on E = [0, co), to the whole line R. An idea of what not to
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expect is provided by theorems of Hille and Phillips [2], who show
that a finite-valued subadditive function defined on (0, co) has no finite
subadditive extension to R if either f(x)—> co as x —• 0 or if f(x)/x—> — co
as α?—> co, and of Cooper [3], who has noted that every even (f(x) —
f{ — x)) subadditive function is nowhere negative. The following theo-
rem completely characterizes even subadditive functions.

THEOREM 3. Let f be subadditive on E. Then f can be extended
to a subadditive even function on R if, and only if, f(x — y) ^
f(x) + f{y) for all x^y in E.

THEOREM 4. If / is nondecreasing and subadditive on E and
nonincreasing and subadditive on (— co, 0), then f is subadditive on R.

COROLLARY. Every nondecreasing subadditive function defined
on E can be extended to R as an even subadditive function. Every
nondecreasing subadditive function f on E can be extended as a
subadditive function to R by f{x) — 0, or by f(x) = /(0), for all x < 0.

On the other hand, a nonincreasing subadditive function on E can
te extended to R as an even subadditive function if, and only if,
sup {f(x): x e E} ^ 2(inf {f(x): x e E}).

4* Extensions from [0, a] to E. The following discussion concerns
the extension of a subadditive function / defined on the interval [0, a],
a > 0, to E = [0, co) or to an interval [0, 6], b > a. The inclusion of
the origin is sometimes convenient and often a nuisance. There is an
obviously parallel theory for extensions from Jk = {0,1, 2, , k) to J
which, together with Bruckner's theorem on polygonal extensions,
provides a fruitful collection of examples in the continuous case. Two
simple ways of extending monotone functions will be mentioned first.

THEOREM 5. Let f be a nondecreasing subadditive function on
ί[0, a]. Extend f by F(x) = f(x) if xe [0, a] and by F(x) = f(a) if
JX > α. Then F is subadditive on E.

THEOREM 6. Let f be nondecreasing and subadditive on [0, a].
Let g be defined by g(x) = f(x) if xe [0, α], g(x) = /(α) if xe (a, 2a],
and g(x) = f(a) + f(x — 2α) if xe(2a, 3α], Then g is subadditive
on [0, 3a].

Proof. Note that g is also nondecreasing (which means that this
-construction can be repeated as often as desired). If x, y, x + y e [0,2α],
then g is subadditive by Theorem 5. If x + ye (2a, 3α], then, by
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cases, (1) if x, y e (a, 2α],

9(x + y)^ 9(3a) = 2f(a) = g(x) + g(y)

(2) if a? € [0, α] and y e (a, 2α], then y -2a ^0 and

βr(a; + y) = /(α) +/(» + » - 2α) g /(α) + /(a?) - 0(0)

and (3) if x e [0, α] and y e (2α, 3α], then

g(x + y) = f(a) + f(x + y- 2a)

^ f(a) + f(x) + f(y - 2a) ύ g(x) + g(y) .

Attention now turns to the topic of maximal extensions. Let /
be a subadditive function on the interval [0, α]. The function Sf
defined at each x e E by Sf(x) = inf Σffa), where the infimum is
taken over all finite collections {xlf , xn} such that 0 ^ x{ ^ a (i =
1, •••,%) and xx + + xn = x is called the maximal subadditive
extension of / to E. Each collection {xlf , xn} is called an a-partί-
tion of x. It is verifiable that Sf is subadditive and Sf(x) ^ î α?)
for all x and all subadditive functions F on E which are extensions
of / . For any given α-partition of x it can be shown, using f(xt + xό) ^
/(#») + /(^i)» that there exists an α-partition (called a refinement of
the given one) which does not contain 0 and does contain at most one
element v ^ α/2—providing an approximation to Sf(x) at least as good
as the original with the additional feature of an upper bound on n+
These ideas have been discussed by Bruckner [1] for the analogous
case of minimal extensions of superadditive functions. Contrary to
the spirit of that paper, assumptions of continuity are avoided in the
following discussion.

THEOREM 7. Let f be subadditive on [0, α]. Then f is non-
decreasing on [0, a] if, and only if, Sf is nondecreasing on Έ.

Proof. Since / is the restriction of Sf to [0, a] (denoted hereafter
«/ = Sf I [0, a]"), the monotonicity of / follows from that of Sf.
Conversely, if Sf decreases, then there exist x,yeE such that
0 < y - x < a/2 and Sf(y) < Sf(x). If ye [0, a], then the argument
is complete. If y > a, let ε > 0 be given. Let {ylf , yn} be a refined
α-partition of y such that yλ > α/2 and Sf(y) + ε > f(yj + + f(yn).
Let z = yλ — (y — x). Then {z, y2, , yn} is an α-partition of x,
so that Sf(x) ^ f(z) + f(y2) + + f(yn). Subtraction yields
Sf(y) - Sf(x) + ε >f(yd - / ( * ) , implying that / decreases on [0, a].
A slight amendment of this argument verifies that "strictly increasing"
may be substituted for "nondecreasing" in the theorem.
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THEOREM 8. // / is subadditive on [0, a], if 0 < c < α, and if
g=f\[0,c], then Sg(x)^Sf(x) for all xeE. Also, Sg = Sf if,
and only if, Sg | [0, α] = /.

The somewhat tedious proof of this theorem is omitted. These
two theorems have served to emphasize the regularity of behavior of
Sf. Treated as an operator on the set T of all subadditive functions
on [0, α], S is a monotone, positive-homogeneous, superadditive operator,
and is additive on certain subsets of T. In particular, S(f + g) —
Sf + Sg if g is a nonnegative scalar multiple of /, or if / and g are
concave and nonnegative at 0. The concave functions satisfy the con-
dition of the following theorem, and it should be noted that the set
of all functions satisfying the condition is closed under addition and
that S is additive on this set.

THEOREM 9. Let f be a subadditive function on [0, a] such that
Sf(a + x) = f(a) + f(x) for all x e (0, a]. Then Sf(ma + x) =
mf(a) + f(x) for all meJ and all xe(0, a].

The proof of this theorem involves generating an α-partition of
3/e(α, oo) of the form {a, α, , α, x) from an arbitrary α-partition
and using the hypothesis to show that it yields Sf{ma + x). A similar
method can be used to show that, if Sf((n + l)α + x) —f{a) + Sf(na + x)
for some n e Jand all x e (0, α], then Sf(ma + x) = (m—n)f{a) + Sf{na+x)
for all m ^ n and all x e (0, a].

5 Boundedrxess and convergence of maximal extensions. The
following theorem generalizes a result of Bruckner [1], who usually
assumes continuity or differentiability.

THEOREM 10. If f is a bounded subadditive function on (0, α],
if m = inf {f(x)lx : x e (0, α]}, and if b — sup {f(x) — mx : x e (0, α]},
then mx ^ Sf(x) ^ mx + 6 for all x e (0, oo).

Proof. Since /(2a?) ̂  2f(x) implies f(2x)/2x ^f(x)/x for x e (0, α/2],
only values oί xe (α/2, α] need to be considered in finding a lower
bound of f(x)jx. Since / is bounded, both m and b are easily shown
to exist. Consider ε > 0 and ye (a, oo). Let {xlf •••, xn} be a refined
α-partition for y such that Sf(y) + e ̂  /(#i) + + f(xn) Since
m ^f(Xi)IXi (i = 1, , w)f m =g (Σfix^/Σx, ^ (Sf(y) + ε)/y, or my ^
£/(#) + ε Since ε is arbitrary, my ^ Sf(y).

There exists a unique integer p such that y — pα/2 + z, 0 ^
^ < α/2. Let t e (a/2, a] such that f(t)/t < m + e/pa. Then the integer
r is determined such that y = rί + #', where 0 ^ 2;' < ί. Note that
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r ^ p. By definition, Sf(y) ^ r/(ί) + f(z'). Since f(t) <tm + tε/pa
and /(«') ^ mz' + 6,

S/(ϊ/) < r(tm + tεjpa) + mzf + b

= m(rί + 2') + 6 + trε/pa ^ m?/ + 6 + ε .

Thus Sf(y) ^my + b.
The proof of Bruckner's Theorem 3 can be used to show that, if

{/J is a sequence of continuous subadditive functions converging
uniformly to the function / on [0, α], then lim Sfn = Sf. (That / is
subadditive follows, even for pointwise convergence, from a result
stated in [2].) His proof makes use of the monotonicity of nonnegative
super additive functions to establish the uniform convergence. The
statement, "/n subadditive and fn—f imply Sfn—>Sf," is false, even
for continuous nonnegative functions. For example, if fn is the polygo-
nal extension to [0,1] of the function gn defined by gn{ll2n) =
g%(l - l/2») - 1/2 and gn(k/2*) = k/2n (k = 0, 2, 3, . , 2n - 2, 2 ), and
if f(x) = x on [0,1], then fn ->f, Sf(x) = x on E, but S/w is tending
in the direction of y = (α? + l)/2 by Theorem 10. However, other con-
ditions which imply Sfn —> S/ can be given.

THEOREM 11. If {fn} is a sequence of subadditive functions on
[0, a] converging to f there, and if fn^>f for all n, then Sfn —• Sf
on E.

It is also noteworthy that the usual kinds of conditions implying
uniform convergence can be modified for sequences of subadditive func-
tions. In fact, a "classical" example, nxj(l + n2x2), of nonuniform
convergence on E provides an example of a sequence of subadditive
functions pertinent to Theorems 11 and 12.

THEOREM 12. Let {fn} be a sequence of subadditive functions
(not necessarily continuous) converging to the continuous function f
on [0, α] and such that there exists a real number m ^ 0 such that
fn(%) ^ ^ ^ for all n and all xe [0, α]. Then the convergence fn—+f
is uniform on [0, a].

6. The Cantor function* Let K be the function defined on the
complement of the Cantor "middle-third" set in [0,1] by K{x) = 1/2
if x e (1/3, 2/3), K{x) = 1/4 if x e (1/9, 2/9), K(x) = 3/4 if x e (7/9, 8/9),
etc., and by the limit at points of the Cantor set. The function K
is a frequently-used example in connection with continuity properties.
To show that K is subadditive, let Kn(x) = K(x) if x is in an interval
which has been deleted from [0,1] at the nt\\ stage in the formation
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of the Cantor set and extend Kn polygonally to [0,1] with Kn(Q) = 0
and KJX) = 1. Theorem 6 may be applied to show that Kn is sub-
additive on [0,1]. Since lim Kn = K, K is subadditive. This example
helps to illuminate the unsolved problem of characterizing the extremal
elements of the convex cone of all nondecreasing subadditive functions
on [0,1], for K is extremal. The other known extremal elements are
of much simpler character.
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