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In a recent paper [1], P. R. Beesack derived the inequality

__fije—
(1) 9@, 9)| £ e

for the Green’s function g(x, s) of the differential system

y(”):(), y(av)’:o; ))31,2,"',%,

(2)
—O°<a/1<a/2<°"<a’n<000

In addition to being interesting in its own right, this inequality is a
useful tool in the study of the oscillatory behavior of nth order differ-
ential equations. It would therefore appear to be worth while to give
a short proof of (1). The derivation of this inequality in [1] is rather
complicated.

We denote by [x,, ®,, -+, ©,] the kth difference quotient of the
function g(x) = g(x, s), i.e., we set

[ib'o, xl] = w}_)_ ,

Lo — X,
[:vo’ Xy, e, wy] — [x()r Ly =2y xv—l] — [xly Loy =y xv] , Y = 2, .
Xy — Xy

This difference quotient can also be represented in the form

(3) [@g, <+, @] = S T Sg(k)(toxo + @, + o oo+ Gr)dtdt, ce - di,,

where the integration is to be extended over all the positive values
of the ¢, for which

(4) o+t + e +t,=1.

This formula, which goes back to Hermite, is easily verified by induction

(cf., e.g., [2]). It holds if g(x) has continuous derivatives up to the
order k¥ — 1, and if ¢g* is piecewise continuous.

Since, by its definition, g(x, s) has continuous derivatives up to
the order » — 2, while g™ has the jump

(5) ge(s) —gu(s) = —1
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at x = s, we may apply (8) with £k =n — 1. We shall do so twice,
identifying the points %,, -+, ®,_, with 2, a,, -+, @,_, and %, a;, -+, @,
respectively. Since, because of g(a,,s) =0, v=1, ---, n, we have

[a;’ ay, -, q,ﬂ__l] — .~_£(x_’s)__
II @ —a)
and
g(x, s)

[x9 Ay * a’n] =

J:Iz (.’X; - a’v) ’

we obtain, upon subtracting these expressions from each other,

(6) (a"n— a)9(®, 8) _ Lg(n—n(v)dt _ Lg(n—n(u)dt )
;«I'_='[1 ({17 - av)

where, for brevity, dt = dtdt, --- dt,_,, D denotes the region defined
by (4) (with k=n—1and ¢, >0, v=0, +--,n — 1), and

(7) =102+t + o0 + 10y, V=02 + 40+ o0 + 0, .

Both for o, =< s and s< ¢ £ a,, 9(%, s) is a polynomial of degree
n — 1. Accordingly, the function g""(x,s) is capable only of two
constant values, say a and B, which according to (5) are related by
a=p+1. If we denote by D, the subset of D in which o, S u < s
(where u is defined in (7), we have

SDg‘”“”(u)dt - agpldt + BS dt = aSD dt + (o — 1)§ dt

D-D; D-D,;

- aSDdt — SD_D dt .

Similarly,

S gV (v)dt = ag dt — g dt
D D

D-D,

where D, is the subset of D in which a, < v < s. Substituting these
expressions in (6), we obtain

(8) (@, — a)9(x, 8) — S dt — S dt .
@ — a,) DD, p-p;

N

y=1

The differential dt is positive, and we thus have

Hes-] sl o], e, @

IIA

Ldt .
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Since

|4 = ar}irv

(as can be seen be applying (3) to the function "' and setting k =
n — 1), this shows that

Jpondt — IRCE (n—il)T

In view of (8), this establishes the inequality (1).
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