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McShanes’s solution of the Plateau problem made use of a repre-
sentation theorem to reduce this problem to that of minimizing the
Dirichlet integral, a non-parametric problem. The parametric integral
considered by Cesari, Sigalov and Morrey [4, 16, 15] can be interpreted
as an area integral for an appropriately generalized area. If this
area satisfies certain conditions there exists a Dirichlet-type integral
and a representation theorem so that the McShane procedure applies.
We shall restrict ourselves to such integrands since further information
concerning the non-parametric problem is required to handle the general
case. Results of [13] ensure the existence of a solution minimizing
the Dirichlet integral and, if the integrand is sufficiently smooth, then
the solution also has differentiability properties. The representation
theorem is used to show that the solution which minimizes the Dirichlet
integral also minimizes the parametric integral.

We use Theorem 5.2 and the representation theorem to correct
an error in [21].

It seems probable that Fleming’s results [9] can be combined with
those of this paper to extend to surfaces of other topological types
the results derived here for surfaces of the type of the disc.

It is desirable that the theory be broad enough to handle the
problem of least area in m, the space of bounded sequences [1], hence
an independent proof that the generalized area, given by the integral
if the representation is good enough, is lower semi-continuous.

Since the Lebesgue area of a surface is obtained by taking the
limit of the areas of a suitable sequence of approximating polyhedra,
there is no loss in generality in supposing that all of the Banach
spaces considered are separable, except m. If B is such a space, then
we can suppose that B is a subspace of m [17].

1. Let M be a metric space, C(J, M) be the space of continuous
functions on a Jordan region J into M and xze C(J, M). Then there
exists a monotone-light factorization xz=»x,t, such that p(J)cm,
L(pt,) = L(x), where L is Lebesgue area and \, is a contraction [17, 18].
If yeC(J, M) then || ¢, — ¢, ]| £ 2|l —y||. If K is a Jordan region
contained in J, then || £, £(D) — £.1x() || = || £(P) — £.(¢) || whenever
»,ge K. Furthermore, there exists a nonnegative valued function »
on the subsets of m such that AA4) < \M(B) whenever AC B and
M () = L(z). If M =m and x is monotone then Max(J)) = L(x)
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[20]. It is not hard to verify that the last equality holds if J is an
admissible set [3]. In addition, if A is contained in a cyclic element
C of p,(J) then MInt ,A) = M(A) where Int,A is the interior of A
relative to C. Finally, M.(J)) = 2N(C) where the summation is taken
over the cyclic elements of p.(J).

A Jordan region is the homeomorph of a Jordan region in the
plane. The letter ¢ will frequently be a natural number or an index
but may also indicate the identity map on m. Thus if p¢,(J) = K is
a Jordan region then ¢, and 4| K are Fréchet equivalent and L(x) =
L(p,) = MK) = L(t, K) where L(i, K) = L(t| K). If a Jordan region
A is cut into two Jordan regions B and C by means of a rectifiable
arc, then MA) = MB) + MC).

A subset of ¢,(J) is open if it is open relative to p(J). If fis
a function on A to B and pe B then f'(p) = {ge A|f(q) = p}.

Let #(x), 2Z°(x), #(®), £(®) and 2 (¥) be, respectively, the
collection of all Jordan regions in Domain 2, all Jordan regions in
Range ft,, that subset of 2°(x) whose boundaries, relative to Range
/., are rectifiable, the open subsets of Range (¢, whose boundaries
are boundaries of elements of <Z(x), and the inverses, under f,, of
the elements of < (x). Thus the elements of £ (x) and < (x) are open,
connected and simply connected.

Now let @ = Domain # and & = ¢.(Q), and L(x) be finite.

LemMma 1.1. If Je F(x) then L(tt,;) = L(t,, J).

Proof. By Kolmogoroft’s principle, L(x, J) < L(£,, J) < L(,,)-
We have already noted the equality of L(x, J) and L(g,,;).

LemmA 1.2. If Ge & (x) and H = 1, (G) then L(x, H) = MG).

Proof. 1f Je #(x), JC H, then L(z,J) = L({t.;) = L(tt., J) =
MeA(J)) = MG). Thus L(x, H) =< MG) since H can be invaded by Jordan
regions [3]. Now let G’ = &€ — G — 8G and H' = £t;(G). By invading,
with multiply connected Jordan regions if necessary, we obtain, as
above, that L(x, H') < MG'). Since x|0H is rectifiable (thus \,(0G)
is also rectifiable) L(x) = L(x, H) 4+ L(z, H') = MG) + MG') = &) =
L(p,) = L(x) and the equality must hold throughout. The lemma
follows.

LEMMA 1.8. Let R, and R, be Jordan regions with R,C Int R,.
Suppose that x is light on A = R, — Int R, into M. Let Z# be the
set of all continuous f on [0,1] into A such that f(0)cdR, and
fQ)€dR, Let 5~ be the set of all continuous h on [0,1] into A
such that h(0) = k(1) and h(a) # h(b) unless (a,b) = (0,1) or (1,0),
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and R, is contained in the interior of the Jordam curve determined
by h. Let a = inf;eg length p,f and B = inf,cq length (2,h. Then
a and B are minima and B < L(z)/a + «.

Proof. Let f,e & with length p.f, < a + 1/n. By Hilbert’s
theorem concerning curves uniformly bounded in length there exists
J' continuous on [0,1] to which a subsequence of ft, f, converge in
the sense of Fréchet. Since z is light, £, is a homeomorphism. It
is easy to see that f = ¢, f’ e &% and length p,.f = a.

Let v = £([0, 1]) and geInt A — v. It is obvious that v is a simple
arc. There exist simple arcs 7, joining 0R, to 8R, and Jordan regions
J, with 8J,coR, U8R, U~y U, such that geJ, and J, invades A.
By [19], there exists g, continuous on [0, 1] into J, such that g,(0) €~
and ¢,(1) €7, such that length .9, = L(x, J,)/a = L(x)/«. By appeal-
ing to Hilbert’s theorem again we obtain a function ¢’ continuous on
[0, 1] into A such that ¢’(0) € ¢£.(7), 9'(1) € £.(v) and R, is contained in
the Jordan region R bounded by g¢'([0, 1]) and the piece of v between
9’(0) and ¢’(1). The lemma follows.

If xe C(J, m) then xi* e C(J, E,) is defined by z**(p) = (xi(p), 2*(p))
for each peJ.

LEMMA 1.4. Let pe & and C be a cyclic element of & contain-
wng p. Then for each € > 0 there exists Re S (x) such that diam R
< e and L, R) < e.

Proof. By [19] there exists, for each 6 >0, Re <Z(x) with pe IntR
and diam R < 4. By [17] there exists a number T such that
L(y) > L(¢,) — ¢/2 where ¥y = (¢,) for < T and ' =0 for 5 > T.
Let N,;. be the essential multiplicity function, [8], of (.)**. Since
SSN“‘ is finite there exists d,, > 0 such that SS N;, < ¢/T* whenever

B
|E| < 0;,. Let 0 =mind;;, 1=<1,k=T. Now take diam’R < j/4.
Since diam (\,)*(R) < 2diam R, L(¢, R) = 3, SSNM + ¢/2 < ¢, where
1<i<j=T
the integral is taken over (\,)*(R). ’

By ‘0 < Z7(x)’ we mean that o is a finite family of non-over-
lapping elements of .77, where .7 is _#, 27 or &2; by ‘<. (x)
we mean that o is a finite family of pairwise disjoint elements of &4
where &¥ is & or &.

THEOREM 1.1. There exists 0,< 2 (x) such that max,e,, diamx(D)—0
and L(z) = lim, > yeq, L(z, D).

Proof. Let C; be the cyclic elements of «?. There exists T,
such that .., MC;) < 1/n and max;,,, diam C; < 1/n. Those points
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common to C; and C;, 1+ J, %,J < T, can each be placed in an
element of <Z the sum of whose areas is less than 1/n. The part
of C;, 1 < T,, not in any of these regions can be cut up into arbi-
trarily small regions each of which has a rectifiable boundary, relative
to C;, by means of the intrinsic inequality. The theorem follows from
the cyeclic additivity of L and the additivity of L relative to a recti-
fiable cut. .
If U is an open subset of @ let U = g, (Int ££,(U)) [23].

LEMMA 1.5. If U is an open subset of Q then L(x, U) = M (U)).

Proof. Let J be a Jordan region (possibly multiply connected)
contained in U. Then g, (J)C ¢ (U) and L(z, J) < M, (U)). Hence
L(x, U) = M¢2(U)). Let € > 0. The intrinsic inequality can be used
to produce 6 < Z (&), & = Uges G C ££,(U), such that MG’) > Met(T))—
e. Let H= p;(G’). Then L(z, H) = MG), by Lemma 1.2, and Hc U.
Thus L(z, U) = L, H) = MG") > Me(0)) — e.

LemMMA 1.6. If U s an open subset of Q then L(zx, [7) = L(z, U).
Proof. L, U) = Mpe(0)) = MpeU)) = L(z, U).

LEmMMA 1.7. If UcVc@Q, Uand V open, then
L(z*, V) — L(z*, U) = L(z, V) — L(z, U) .

Proof. Let € >0. By Theorem 1.1 there exists ¢ < = (%),
Ubee D U, and pes L(z, D) > L(z, U) — . Thus

L™, V) — L(=*, U) = L=, V) — 3, L(*, D)
= L(z**, V —DLéJ D)= L(x, V —DLeJ D)
= L(x, V) —Dg L(z, D) < L(x, V) — L(z, U) + ¢ .

2. If B is a Banach space over the reals, then B, is the set of
all elements of B having norm one and B* is the space of continuous
linear functionals over B. For the purposes of this paper there is no
loss in generality in supposing that B is separable. In this case there
exist f,eBf, n=1,2, -+, such that ||e|| = sup, [@, f.]. By identify-
ing a € B with {[a, f,]} € m we can suppose that B is a subspace of m
[17]. Let m' be the space of bounded functions 8 on N x N, N is
the set of positive integers, such that B(m, n) + B(n, m) =0. Ifa,bem
then we define ¢ A bem’ by a A b(m, n) = a™b" — a"d™, where a = {af}
and b = {b’}. Thus we suppose that the exterior product of B with
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itself, B A B, is contained in m'. If Bem’ then we put ||B]| =
sup |B(m,n)| and obtain [la Ab| =2[allllb]|=la|+[[b|* If
a Ab=0 then a and b are linearly dependent, and conversely. We
will usually write 8% for A(3, k).

If f is continuous on a Jordan region J into the plane then
O(f, 0J, p) is the topological index of p relative to f(0J).

LemMmA 2.1. If U is an open connected subset of Q and if J,
s a sequence of (possibly multiply-connected) Jordan regions invading

U then lim”O(x“‘, 0J,) exists. The limit is independent of the
sequence {J,}.

Proof. Let ¢ >0 and take K so large that L(z, J,) > L(x, U) —¢/2
for r > K. If w > m > K then

( SSO(W, 8J,) — ggow'ﬂ, 8T,

—efa< ’ SSO(m“‘, 8(J, — Int J,))

< §§| O@™*, 8(J, — Int J,)) | < L™, J, — Int J,)
< L(z, J, — Int J,) < L(z, J,) — L(z, J,) < ¢ .

Let a¥ = \\O(x*, 8J,). Then {«i*} is a Cauchy sequence for each
(i, k). Let a* =lima¥. Clearly a,em’, aem/, and a, — «a in m'.
The last statement is evident.

If U is an open connected subset of @ then we define <z, U) =
a. We may write <{z, J) for {x, Int J> when J is a Jordan region.
Thus we have just shown that ||<{z, U) — <=, J>|| =< L(x, U) — L(z, J)
if JcU. If U is not connected we put <z, Uy = 3{x, W) where
the sum is taken over the components W of U.

LeMMA 2.2. If UcC V are open subsets of Q then

LEmmA 2.3. If U is an open subset of Q and ¢f DC U, De & (%),
then {x, Uy = <=z, D) + {x, U — Clos D).

The proof depends upon the fact that the image of 8D under x
is rectifiable.

The monotone map ¢, induces an orientation of the cyclic elements
of «7[24]. We assume from now on that & is a subset of m together
with this induced orientation.

LEMMA 2.4. Let r, be the monotone retraction of & onto one of
its cyclic elements C. If J is a Jordan region contained in Q then
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O(z**, 8J) = JO((\.)*r,, 1(0])), where the sum is taken over the cyclic
elements of &.

Proof. Let ¢ — p,(0J) and suppose that 7, is constant on 6 and
that r, =1 on p,(0J) — 0. Let E be the oriented plane containing
2*%(Q), Pc E, and L be a half-line in E terminating at P. If pecdoJ
and f is continuous on J into K, let w(f, p) be the angle between the
half-line determined by f(p) and P with L. Evidently the change in
w(x**) around &J is equal to the sum of the changes of w((\,)¥7,) on
t.(0J). Thus <z, J> = I\, ().

LEMMA 2.5. <z, U> = n, t(0) .

Proof. We can suppose that U is connected. Let ¢ > 0. There
exists a Jordan region J < U with L(z, U) < L(z, J) + e. If K = IntJ
then

Sy L0, (D)) — LOwro, 14(K))]
= L(\., £.(0)) — L(n,, p(R)) = L@, U) — L(x, J) < .
Hence
1<z, Uy — sy O] = 11 <8, U = <o, Tl

+ H <w7 J> - 2<)"x'rt7: ”x(J)> ” + H 2<7\'x’ray ‘az( ﬁ)> - 2<>"x7'0y #x(J)> ”
+ 1| Z0Toy (D)) = Qs (O [ <o+ 0+ 6+ 0 =25,

LEMMA 2.6. Let p (U) contain a cyclic element C of the type
of a sphere. Then {\,ry 1 (U)) = 0.

Proof. Since U is open and ¢, (C) < U there exists a Jordan region
J with g, (C)cJc U. Hence, since 7, is the identity on C,
<7\‘m/r0; l’cx(J)> = <)":n Irlhax(J)> = 0'

LEmMA 2.7. If x is constant on 0Q then {x, @> = 0, furthermore
&, @ = 7oy LAQ)) if Cy is the cyclic element containing 2,(0Q).

Finally, <z, Uy = I\, (U)> where the sum extends only over
those cyclic elements of « mnot contained in p,(U) plus, possibly, C,.

LEMMA 2.8. Let C and C’ be two Fréchet curves in K, of the
type of the circle, each of whose lengths is less than M. Then

mEZ[O(Cr p) — O(C’, Pldp| = 2M || C, C'|

where O(C, p) is the topological index of p relative to C and || C, C'||
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18 the Fréchet distance between C and C’.
Proof. Choose ¢ > 0. There exist functions f, g, f’ and ¢’ on
[0, 1], all continuous and of bounded variation such that ||f — f'|| +
llg — 9"l <I|IC,C"|| + ¢ and
[ltoe, » - o', pnas| || dg - | 7ag|

=|[\r =g + [ @ = orar| < 2mgic cli + 9

We require an additional property of .. If »,ge@Q then
[l t(p) — (@) || = inf {length xg|g is continuous on [0, 1] into @ with
9(0) = p and ¢(1) =g} .

THEOREM 2.1. Suppose that x,— x in C(Q,m) and that there
exists a number M such that L(x,) < M for all m. Then for each
simply connected Jordan region J,C Q there exists a finite collection
o, of non-overlapping simply-connected Jordan regions in J, such that

lim S <&, > = <z, > .
JEoT,

Proof. If the theorem were false there would exist & > 0 such
that limsup | Yser, <% JD — <&, Jo» | > &, for each admissible {s,}. By
extracting a suitable subsequence we can suppose that the limit exists.

Let C, be the cyclic elements of & and 7, be the monotone
retraction of & onto C,. There exists a number 7T such that
Susr MC) < g /4. For each k < T let Kj(k) be the Jordan regions in
C, whose boundaries, relative to C, are subsets of 7,.(0J;,). There
exists a number s, such that ;. MK;(k)) < &/(8T). Let s = maxs,
and 7 = ¢)/(4Ts).

Let us fix k< T, j<s, and write K for K;(k). There exist
Jordan regions K;C K, 1 =1, 2,3, with K,Cc K, —0K,Cc K,C K, — 0K,
C K, K — 0K, where boundaries are taken relative to C,, such
that MK,)) > MK) — 7. Let 4 = inf diam A where A is a continuum
in K, — K, which separates 0K, from 0K,. Evidently + > 0. Let
&(4, k) = (1/6) min {1, dist (0K}, 8K,), dist (0K, 0K), dist (0K, 0K), 4}, &€ =
min&(g, k), N= M/ + 1, and { = min{§, 7/(4N)}. We consider only
such n for which ||z, — 2| < ¢

Let T; = (rytt,)"(K; — 0K;). Then T; is an open two-cell and
there exist Jordan regions S, and S; such that T, S, S, T; and
dist (££,(0S,), £.(0S;)) > 5. Let B, = (¢, (8S;). Then dist (B, B;) >
8¢ — 4L = 4.

If p is a cutpoint of &, = £, (Q) on B; and if C'(n) and C"(n)
are two cyclic elements of «?, separated by » then only one is not
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separated from B? by p. Hence there is a single cyclic element C(n)
of &, such that no cut point of &, on B} separates C(n) from B}.
Let r(n) be the monotone retraction of «, onto C(n).

If B2N C(n) = 0 there is a cutpoint p between C(n) and B:. Hence
p ¢ B} and, consequently, p separates B? from B;. This implies that
there exists a continuum A cC K, — K, which separates 6K, from 9K,
and whose diameter is less than 4&, but this is a contradiction. Hence
BN C(n) #+ 0 and, therefore, dist (r(n)B:, r(n)B?) = dist (B, B7) > &.
Thus there exist Jordan regions R:cC R} c C(n) such that r(n)B:C R},
r(n)B; N R =0 and dist (@RZ 0RE) > &. Since MR < MCm) < M
there exists a Jordan region R(n) with R:C R(n)C R} and length
0R(n) < N.

The curves {9R(n)} lie in a compact set and are uniformly bounded
in length by N; thus there exist representations <v,€ R(n) on [0, 1]
such that v, converges uniformly to a continuous function v on [0, 1]
onto 2. From now on suppose that » is so big that ||v, — 7| <.
Let te€[0,1], » =¥(t) and P, = 7.(t). There exists ¢,€ S, — S, such
that p, = £, .(¢,). Thus [ — £(¢.) || = | — Dull + || £,(2.) — L2 || =
{4+ 2 =3¢. First suppose that t.(¢,)eC,. Then £ (q.)€ K, — K,.
Whether peC, or not, |[7(p) — £(¢.) ] = [|p — ££(2.) || < 8. Now
suppose that ¢.(q,) ¢ C.. If r.tt.(q,) separates p from C, then r,£1.(q,) =
7(p); otherwise || 7(p) — 7f(q.) | < || P — £2(¢.) || < 8C. Thusif p =
V() and qeq(t) = rpfe.pe;,7.(t) then ||p — ¢ < 3. Let A(n) = Uq(?).
Then A(n) C K, — K,, 7([0,1]) € K — K, and A(n) separates 8K, from
0K,. If r,v could be shrunk to a point in K, — K, then v could be
in & — K,, Now B,= U, ¢.7(t) would be shrunk to a set of
arbitrary small diameter in C(n) — R?, for » large enough, and this
is impossible since diam R? = diam K, — 2|z — «, .

Let G; be the components of K — ([0, 1]) which do not contain
0K. Then

Sgomﬂw, [0, 1) = SSO(R“‘, (10, 1) = 30, G
and
[0, 10, 1) = <., Rmp*
where m*(a) = (@/, a*). By Lemma 2.8,
momim, [0, 1) — O(x**, [0, 1])| < 4N¢ .

Let the subscripts of the G’s be so chosen that G, D K;. Then
[y K> — g,y G|l < MK) — MGy = MK) — MK) <7
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Hence ||\, R(n)) — N, K> || < 4N{ + 7 < 27.

Next, ,, R(n)) = {\,, r(n)"R(n)y = <{x,, D,> where D, =
2. [Int r(n)" R(n)]. There exists a simply connected Jordan region J,C D,
such that || <#,, D,> —<&,, J.o|| < 7. Thus ||{\, K> — &, I || < 3.

Let »'(n), R'(n), J'(n), K’ and K, correspond to K; (k') as r(n),
R(n), J(n), K and K, correspond to K;(k) and suppose either k #+ k'
or j#7. If R(n)NR'(n)+# 0 there exists pe R(n) N R'(n), ¢ K,
and ¢’ € K7 such that ||p —q|| < 2(, and ||p — ¢'|| < 2(,. This gives
4 =42, > |lq — ¢'|| > dist {g, 0K} = dist {0K,, 0K} > 5 > 4{. Hence
R(n) N R'(n) = 0, r(n)R(n) N r'(n)R'(n) =0 and, finally, J(n) N J'(n)=0.

Now let o, be the collection of all such J,, one for each K;(k).
By some arithmetic we get

|3 G > =< >

<.

CorROLLARY. If »,—a, L®,) <M and o< _#(x) then there
exists 0, < _Z(x,) = _Z (%) such that lim 3 ;eq, <&, I) = Zses <&, ID.

3. If aem let 7, (a) = ,a = {,a’} where ,a° =a‘ or 0 according
ast=<mnor i>n If aem let ,a = a’* or 0 according as 1,k = n
or either ¢ or £ >n. Let ,m = 7,(m) and ,;m = ,m A ,m. We recall
that we can suppose that ,m’' cm/.

Let + be a nonnegative valued function on ,m’, for some natural
number %, with the following properties:

(i) « is continuous,

(ii) 4 is positively homogeneous of degree one,

(iii) «r is convex, and

(iv) there exist K = k > 0 such that k||a|| < ¥(a) = K||«]|| for
all ee,m’. Let F, be the collection of such functions .

Let .o’ be the set of all 4 defined on m’ with the property that
Vo = [(m) € Fy and ¥, < Pop, Yo — Y

Let 4re o', If there exist Scm* X m* such that (a A b) =
sup {[a A b, f A gl|(f, 9)€ S}, where [a Ab, fAg]=f(a)g(b) — f(b)g(a),
then + is simple. If v(a A b) =[a A b, f A g] for some (f, g) € S then
we write (f, g)e S(a A D).

We now norm m X m’ and m x m'* by [|[(a, )| =||a|| + |||l
and ||(a, Q) || = ||a]] + ||{]| where aem, aem/, Lem'* and || || is
the appropriate norm.

Suppose that A is a bounded closed subset of ,m for some 7 and
4 is a real-valued continuous function on 4 X ,m’ with +, € F,, where
(@) = (e, @) for each a € A and ae,m’/, with k and K of (iv) inde-
pendent of a.
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LEMMA 3.1. Let + be as in the last paragraph. Then - has
an extension +r, on ,m X ,m’ which satisfies all of the conditions
imposed on + with A replaced by ,m.

Proof. Let h be defined on A X ,m* by

1 [, ]
W@, 0)  vecam (@, @) "

It is easy to see that k < h(a,{) < K and that & is uniformly con-
tinuous. The McShane Extension Theorem (15], applied to &, yields
an extension k defined on ,m X ,m* which has the same bounds and
modulus of continuity as k. Let (e, @) = max {k(e, {)l«, {]| { € mi*}.

Let F, be the collection of all such functions . Let .o~ be the
set of all 4 defined on m x m' such that +, € &, there exists K =
k>0 with k||la]| = (e, a) < K||a|| for all aem, aem/, +, =
q/" l (nm X nm’)e Fn and "lfn é "kn+17 “ﬁ"n - "1’"

Let ve &, a, and & in m' and suppose that ai* — a’* for all
(4, k). Then ,a,— ,a for all n. Hence (@, &) = lim ,(,a, &) =
liminf ¥(a, &,). Thus (e, @) < liminf ¥(a, a,).

Suppose that +, e F, with k| .| < .., &) =< K||,«|| for all
(a, @). Let +,(,a, ,&) = max (¥,(,@, @), k|| ,|]) for »p >mn. Then
¥, € F, for such p and + = lim+r, is in .&. Furthermore, + is an
extension of 4, and is simple if , is.

If xe C(Q, m) we define, for each € &7,

Pr19) = Jim, 5 min y(6(0), <o, 1) < F@.

Suppose that e 7. It is easy to verify that P(y,x) =
lim P(+r,, ).

In [17] the definition for the Peano area of x was equivalent to

P@) = sup % sup |[l0@™, a7)] .

o<l g(z)J€ET ik

If Range « is contained in a Euclidean space (which we can
suppose is contained in m) then P(x) is the usual Peano area of .
Let y(a, @) = ||a||. Evidently +,€ . o7.

LeMMA 3.2. P(4, ) = P(x).

An inequality in one direction is obvious. The difficult inequality
follows from a result of Cesari [U= V, 3].

LEMMA 3.3. P(y, ) =“1iﬁn Siree Infu mer V(@(D), <Ny TD) where
al|—-0
o < FH(x), #(x), or Z(x), and
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Py, ®) = lim 3, inf y(2(p), <z, D)), o< (@) .
llell=0 De€w pED
The proof makes use only of the definitions and the results con-
necting <z, J» with v, ().

LEmMMA 3.4. If x and y are Fréchet equivalent then P(y, x) =
Py, y). Furthermore, P(y, ) is cyclically additive.

We understand that the space of Fréchet surfaces is given the
Fréchet metric.
If & is a Fréchet surface then P(v, .&¥) = P(¥, ®) for any x € .~

THEOREM 3.1. P(4r, +) s lower semi-continuous both on C(Q, m)
and on the space of Fréchet surfaces.

The results of the Corollary to Theorem 2.1 enable us to use the
standard arguments.

THEOREM 3.2. If xi converges uniformly to «* for each 1, then
Py, ) < liminf P(4r, @,).

There is nothing to show if e F, for some nm. Otherwise we
make use of the fact that the limit of an increasing sequence of lower
semi-continuous functions is again lower semi-continuous.

4. Our next step is to show that the expected formula holds for
P(+r, ) whenever x is smooth enough. What follows is drawn from
[4; §§28, 30, 32, 12.10 and 12.12].

Let e C(Q, m). If L(x**) < « then the interval function whose
value on R is <=, R)" is differentiable and its derivative _~#(x*) is
the generalized Jacobianm of x** = (x¢, x*). If x* and «* have ordinary
first derivatives almost everwhere in Int @ then # (x*) = wixh — wink
almost everwhere. We define the generalized Jacobian of x on m' by
[_#@]* = _~# (™). Since P(y, x) is superadditive, it has a derivative
almost everywhere. By Jensen’s inequality,

| 4@, 7@ = min v, || @)

for each square ¢ contained in Int Q. It follows that P'(vy, z, p) =

y(@(p), 7 (x, p)) almost everywhere. Thus P(v,x) = ggq/r(x, _Z(@)).
We wish to show that the equality holds for « sufficiently smooth.
The proper requirement would be absolute continuity in the sense of
‘Cesari, but we shall content ourselves with showing that the equality
holds if # is a D-map [21].
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THEOREM 4.1. If  is a D-map on a Jordan region @ and + € 7
then P(y, %) = qu ¥z, 7 ().

Proof. Since « is a D-map, P(y, 2| -) is an absolutely continuous
interval function. Hence, by the preceding paragraph, we need only

show that P(+, x) < qulr(w, _# (x)). Furthermore, if & > 0, then there

exists a finite collection ¢ of non-overlapping squares contained in
Int Q such that

P@p, ) —e < S min v (a(o), || 7 @)
= 2|l v@ s =] vo _s@)

g€T

where we have used the fact that « is a D-map to obtain ¢ and the
equality of <z, ¢> and SS« F ().

If &7 is a polyhedron then there exists a quasilinear representation
xz of &2 on the unit square and P(v, &) = qup(w, _#(x)). Since

SSH FZ@)]|| is often referred to as the elementary area of &, we

shall regard Ssq/r(x, () as the elementary area of &7 corresponding
to the (nongeometric) area . Let us write & (¢, &2) for this quantity.
That the elementary area is lower semi-continuous with respect to
Fréchet convergence follows from Theorems 3.1 and 4.1.

Now let .~ be a Fréchet surface of the type of the two-cell. We
define a Lebesgue area for .&# as follows:

L(v, &) = liminf & (v, &)
FF

where the convergence is with respect to the Fréchet metric. That
L(+, +) is lower semi-continuous with respect to Fréchet convergence,
and therefore with respect to uniform convergence, follows in the
usual manner.

If klla|] = v(a,a) = K||a|| and x € C(Q, m) then it is easy to see
that kL(x) < L(vy, ) < KL(x).

5. Let &2 be the collection of all continuous nonnegative valued
functions ¥ on m X m which are positively homogeneous of degree
two, convex, and for which there exists K=k >0 such that
Elllal + 18] = ¥(a, b) = K[|la | + [[b]|] for all (a,d)em X m.

Let ye 2", ¢ Ad # 0, and 7 be the plane determined by ¢ and d.

Lemma 5.1. Leta+#0,aen, 7w, ={pex|(a A p)/ic A d) > 0}and



A PROBLEM OF LEAST AREA 321

f(®) = ¥4(a, p)/|la A p|| on m,. Then the set E(a) of relative minima
of f is closed and convex, and f is constant on E(a).

Proof. Suppose that p and ¢ are in E(a) and that ||a A ¢ —
la Ap|]l=k>0. Let ow)= 3, wp+ (1— w)g) and Aw)=
la A qf| — kw. Since @ is convex and @(w)/A(w) is (—1/k) times the
slope of the line joining (||a A q||/k, 0) to (w, (w)), it follows that
0, #(0)), (1, (1)), and (j|la A q|/k, 0) are collinear and @/A is constant
on [0,1]. If & = 0 the convex function ® has horizontal tangents at
(0, #(0)) and at (1, #(1)). Hence @, and therefore ¢/A, are constant
on [0, 1].

Now define g(a) to be the value assumed by f on E(a). If k and
K are related to v in the usual way then k =< g(a) < 2K.

Lemma 5.2. g ts continuous (on 7).

Proof. Let 0 # a,— a #* 0 and g(a,) = ¥(a,, 0.)/||@. A D,|| Where
a,, a and p, are all in w. We can suppose that p,— p,. Since
g9(a,) = 2K for all n, liminf ||a, A p,|| > 0. Hence g(a) < liminf g(a,).
On the other hand, suppose that g(a) = ¥(a, p)/||a A p||. Now g(a,) <
V(@ D)@, A p||, for sufficiently large », and so limsup g(a,) < g(a).

Since g is positively homogeneous of degree zero we can define
K(c N d) = maXese- 9(a).

Now we use 4 to generate an area A+ by the formulas

Ay(a Nb) = K(a ANb)|la A b
and

Ay(@) = inf 3 Avy(a, AD,).

apAby=

LEMMA 5.3. If Ay(a Ab) = 3(a, b) then ||a||/L <|b]| < |lalL
where L = (K + VK — B)[k.

Proof. Let ||b|| = #*||a|| where ¢* > L. Then (ta,b/t) <
K@|la|P +t*][b]]) = 2Kt*||a | < k(1 + ¢') ||a | = ¥(a, b) which is a
contradiction.

If @ A b+ 0 then by an application of the Hahn-Banach Theorem,
[17], there exist f,gemy such that [a Ab,fAgl=1aAb| and
max (| ()], |9())=||7]| = |f(r)| + |g(r) | whenever 7 is linearly dependent
upon a and b. Hence (f3(r) + ¢*(r))/2 < || r|]* < 2(f*(r) + 9°(r)) for all
such » and ([[a|f + |[0)/4 =[]+ [Is|F = 4(la|’ + [|0]) if r=
acosf —bsinf and s = asind + bcosd.

Let o' ={¥ez"|¥(acosf —bsinb, asin§ + bcos ) = ¥(a, b)
for all 6, ¥ = lim ¥,(a, b) and ¥, < ¥,., Where ¥,(a, b) = ¥(,a, .b)}.
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Let &7 be the collection of all continuous functions on m XxXm XxXm
for which there exist constants K = k > 0 such that k(||b]]* + ||¢|)=
¥(a,b,c) = K(|b|* + ||¢]|) for all a,b,cem and such that ¥, &',
where ,(b, ¢) = ¥(a, b, ¢). If ¥ e <r then ¥,(a, b, ¢) = (¥,).(b, ¢). We
may write +, for ¥,|(;m X ,m X ,m). Let &, ={ye |4+ = ¥.}.

LEMMA 5.4. If & € =’ then Ay(aAb) = min{y(c, d)|cAd = a Ab}.
The proof is straight-forward.

If e 2" then let N = 2(y)""

LEMMA 5.5. Let ve€9 and (a,b)em x m. If there ewist
(f, 9)em* x m* such that (f, g) is a supporting linear functional to
(the comvex fumction) N at (a, b) and if f(a) = g(b) = N(a, b)/2, f(b)=
g(a) = 0, then Avy(a + pb, pa + ab) = [(Aa + ub) A (pa + ob), f A g]
whenever Ao — (o = 0.

Proof. N(a, pa+ ob) = (1+ 0)N(a,b)/2 implies that ¥(a, pa+0d) =
1 + 0)*y(a, b)/4 = o9 (a, b). It follows from Lemma 5.4 that Ay (a Ab) =
¥(a, b).

LEMMA 5.6. Let € <2’ and suppose that A(a A b) = v(a,d).
Let (f', g") e * x o* satisfy f'(a) = g'(b) = N(a, b)/2, f'(b) = 9'(a) = 0,
where m 1s the plane determined by a and b. Then (f',9') is a
supporting linear functional to N|(x X w) at (a, b).

Proof. We write N for N|(z x w). Let A, ¢, p, 0 be real numbers,
a' = a + ¢b and b’ = pa + ob. By hypothesis, A\d — o > 1 implies
N(a',b') > N(a,b). We must show that N(a’,b') = (A + 0)N(a, b)/2
for all A, ¢, p, c. However, since N is convex, we can suppose that
IN—1], | ], |e]and | — 1| are all less than 1/2, which implies that
Ao — (0 > 0. Let :, = (n + N)/(n + 1), ¢t, = ¢f/(n + 1), o, = p[(n + 1),
o,=mn+0)n+1),a,=x1a+ 0,0b,=p,a+c,band t < (X + 0)/2.
Then (a,, b,) = (n(a, b) + (a’, b"))/(n + 1) and, for sufficiently large n,
MGy — M0, = (0 + n(X + 0) + Ao — pp)/(n + 1)* > (n + 8)/(n + 1)
For such %, N(a,, b,) > (n + t)N(a, b)/(n +1). Thus nN(a,bd) +
N, b') > (n + t)N(a, b) and N(a/, b)) > tN(a,b). Hence N(a', V') =
(A + d)N(a, b)/2.

LEMMA 5.7. Let € =’ and suppose that A+(a A b) = J(a,d).
Then there exist (f, g)em* X m* such that (f,9) is a supporting
linear functional to N at (a,bd) and f(a) = g(b) = N(a, b)/2, f(b) =
g(a) = 0.
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This lemma follows from the preceding and the Hahn-Banach
Theorem.

If vye =z’ let S ={(f, 9)|(f, 9) supports N for some (a, b) and
f(a) = g(b) = N(a, b)/2, f(b) = g(a) = 0}.

THEOREM 5.1. If v € &' then
Ay(a A b) = sup{la A b, f A g]|(f, 9)eSH)}.

Proof. Suppose that A+ (a A b) = ¥(a,b). Then Av(a A D) =
N(a, b)/4 =[a A b, f A g] for some (f, g) € S(+), by Lemma 5.7. Now
let (¢, d)em x m. If we choose § so that f(c)siné -+ f(d)cosd =0
and let ¢’ =ccosf —dsind, d =csinf + dcosfd, then we obtain

[eAd, fAgl=[ ANd,fAgl=F(c)gd) = (f()+ g(d))y/4

= N, d')[4 = (', d') = ¥(c,d) = Ay(c A d).

LEMMA 5.8, Let ¥,€¢ & and +(a, b) = max, 4@ cos  — bsin 6,
asinf + bcosf). Then Ay, = Av.

Proof. Let o/ A b # 0. There exist a, and b, with a, A b, =
a’ A\bY such that Av(a, A b) = ¥(a, b)) and there exists 6 such that
J(ay, b)) = (a, b) where ¢ = a,cosd — b, sind and b = a,sin 6 + b, cos 4.
Let m be the plane determined by @’ and b’ and N, = 2(3,)"*. If both
N,|(r x 7) and N|(7r X 7) have unique supporting linear functionals
at (a, b) they must coincide since N = N, and N(a, b) = Ny(a, b). Thus
there exist f’ and ¢’ on 7w such that (f”, ¢’) is the supporting linear
functional and f'(e) = ¢'(b) = N(a, b)/2, f'(b) = ¢g'(a) = 0. Thus
Nya, pa + ab) = (f'(a) + dg'(d))* = (1 + 0)’)N*(a, b)/4 whenever o > 0.
Hence Avy(a A b) = J(a, b) = ¥(a, b) = Av(a A b). If either N,|(w X )
or N|(mr x 7) does not have a unique supporting linear functional at
(a, b), let € >0 and choose N; on w X 7w to be strictly convex, of class
C”, positively homogeneous of degree one and such that N, =<
Ny < (1 4 €)’N,. Let 4= N;*/4 and ' be defined for - as + was
for 4. Then Ay < Ay = Ay < (1 + €)Aqp,.

THEOREM 5.2. Let M be a norm on m and ¥(a,d) = (Ma) +
M*b))/2. If M*(f)=sup{f(a)|M(a) =1} for all fem* then Ay =q
where J(a A b) = sup{la A b, f A gl| M*(f) = M*(9) = 1}.

Proof. Suppose that @ A b # 0. Then, by the argument of [17]
where M = || ||, there exist ¢, d € m and f, g € m* such that M*(f)=
M*9)=1, ¢ ANd=aADb, fle)= M()= M) = g(d), f(d) = g(c) =0,
and (@ Ab)=[a Ab,fAgl It follows that (f,g)eS(¥) and so
Ay = . On the other hand, if (f, g)€ S(¢) then there exists a and
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b with @ A b+ 0 such that (f,g) supports N at (a,bd) and f(a)=
g(b) = N(a, b)/2, f() =g(a)=0. Since (ta,b/t) has a relative
minimum at one, we see that M(a) = M(b). Now let cem, and
choose ¢t > 0 so that M(tb) = M(c). We have f(c) + M(c) = f(c) +
g(tb) = 2((M*(c) + M*tb)/2)"* = 2M (¢). Thus M*(f) < 1 and, similarly,
M*(g) =1 and so ¥ = Av.

6. If x is a D-map on J then {xi} is defined almost everywhere
in Int J and is an element of m. We define , = {xi} and x, = {xi}

1. Let D@ = |[Ulaulr + o) I 0) = [[w(@, ou A ), and

I(p, ) = ﬂ«}(w, %, %,) Where all of the integrals are taken over Int J.

Suppose that {x,} is a sequence of continuous functions on the
unit circle €. Then {x,} satisfies the three point condition if there
is a 6>0 and w,,€0%,79=1,2,83, such that ||w;,, —w;.|| >0,
|| 2 (W;n) — 2(w;5,) || > 0 wWhenever 4 # 7, 4,5 =1, 2, 8.

If ye &»,, if x, and & are D-maps on & and if x. converges
uniformly to #* for each ¢, then I(y, x) < liminf I(v, x,) [13]. Hence
I(y, ) < liminf I(y, x,) for all € <.

If « is continuous on a Jordan region J into a Banach space B
and if &7 is the Fréchet surface determined by « then 8.5 is the
Fréchet curve represented by x|aJ.

The proof of the following lemma is modeled after a proof in [2].

LEMMA 6.1. Let He & where B = R, and suppose that H is of
class C" and strictly convex in its last two arguments. Let <P be
an open non-degenerate polyhedron im B. Let p;, and q;, 1 =1, 2, 8,
be distinct points of 8C and 07, respectively. Then there exists a.
D-map xz* on & which represents < such that x*(p;) = q, and
I(H, »*) = I(AH, x*).

Proof. We mention, first, two properties of H. If yis a D-map
and 7 is a conformal transformation, then I(H, y) = I(H, Ty). Also,
S Yol (Y, Yo ¥) = S YiH 4y, Y, y,) Where H; = (0/0y})H and H,;=
(0/0y:)H.

Let K Dbe the nonempty class of all representations of &2 on &
which are D-maps. Let I = inf,. I(H, 2) and let {x,} be a minimizing-
sequence in K. Since I(H, %,) = I(H, Tx,) for T as above, we can.
suppose that ,(p;) = ¢;. By Theorems 5 and 6 [21], the sequence {x,}
is equicontinuous. By deleting some terms, if necessary, we can
suppose that z, converges uniformly to z* where 2* € &7 and z* is a.
D-map [21; Th. 8]. Thus z*e K and I(H, z*) = I.
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Now let @ and + be Lipschitzian with constant M on %. The
transformation U(u,v) = (a, B), @ =u + ep(u, v), B = v + ey (u, v),
together with its inverse, is Lipschitzian if |e| < 1/(8M). Set z(a, B) =
x*(u, v). Then « is a D-map. Let T be the conformal transformation
of domain % onto & which takes U(p;) onto »;, and put X=aT".
Then Xe K. Put

JE) =I(H, X) = Sgg DH(x*, x¥B, — x¥a,, —xia, + via,)dudv
where D = d(«, B)/o(u, v). Then

0=2J'00) =

[[, (@ = B2, — 2F70) + (8% — 6", — 2Py ))dudv
where
E* = 3, oi*H; (¢*, ©f, x7) ,
F* = S wi*H (a*, a%, aF) = X o H;, (a*, ©f, o)

and

G* =X i H (a*, xF, xF) .
Since @ and + are arbitrary, we obtain
(1) | (—4p.+ Bey =0 ana ||_(av,+ Bry =0
where A = E* — G* and B= —2F*. By (1) and Haar’s lemma [13]
(2) SM(Ad@ — Bdu) =0
for almost all rectangles R< <. For each & > 0 let
& ={u,v)eZ|[u—h,u+h] X[v—"~h v+ h]lCcz}

and let A, and B, be the h-average functions of A and B defined on
%». These functions are continuous and satisfy (2) for every rectangle

(u, v)
Rc &,. Let {,(u,v) = | (4,dv — B,du), the integral being inde-
(0, 0)

,

pendent of the (rectifiable) path joining (0, 0) to (u, v). Now ., =
—B, and {,, = A,. Using the other part of (1) in a similar fashion
we obtain %,, = —A4, and 7%,, = —B,. Thus {, and 7, are harmonic
on &%. By [13; Th. 4.2, p. 74], {, and 7, both vanish on 0%%,. Thus
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E* = G* and F'* = 0 almost everywhere in &, and by Lemma 5.5,
AH(ax*, x* A x¥) = H(x*, oF, v¥) wherever these equalities hold.

If ¥ye & and v is a D-map on an open set G then x is Ay-quasi-
conformal on G if ¥(x, x,, x,) = Ay(x, ©, A ©,) almost everywhere on
G. If J is a Jordan region then we say that « is Ay-quasi-conformal
on J rather than on IntJ.

LEMMA 6.2. Let &# be an open non-degenerate polyhedron and
suppose that € <. If p, and q;, 1 =1, 2,8, are distinct points of
0% and 0.2, respectively, then <7 has an Ay-quasi-conformal repre-
sentation x on & such that x(p;) = q,.

Proof. There exist H, as in the last lemma with H, < H,., and
¥ = lim H,. By Dini’s Theorem, we can suppose that ¢ < (1 + 1/n)H,
on | #| x B, X B, where | &?| is the compact set covered by 7.
Let z,€ & be AH,-quasi-conformal with «,(p;) = ¢;. Then, as before,
there exists a D-map € &7 and we can suppose that x, converges
uniformly to . Hence I(v, %) < liminf I(¥, %,) < liminf (14+1/n)I(H, x,)=
liminf 1 + 1/n)I(AH,, x,) = liminf (1 + 1/n)I(AH,, ) = I(A+, ).

THEOREM 6.1. If &7 1is an open non-degenerate surface of finite
Lebesgue area, if € <, and if p; and q;, 1 =1,2,3, are distinct
points of 0F and 0.% then S has an A+-quasi-conformal represen-
tation © on & such that x(p;) = q,.

Proof. There exist open non-degenerate polyhedra 2, — .&” such
that (A, &) — L(AV¥, ). Let q;., 1 =1, 2,3, be distinct points
of 87, such that q;,— ¢q;. There exist Avy-quasi-conformal represen-
tations », of <, such that z,(»;) = q:,.. Hence, as before, there
exists a D-map x <€ .%and we can suppose that x, converges uniformly
to . Thus

I(¥, ©) < liminf I(¥, %,) = liminf I(A¥, »,) = liminf & (A7, Z.)
= LAy, &) = I(Ay, %) .

7. A subset 9% of m is c-closed if a € .27~ whenever there exists
{a,} in 2¥" such that a} — a’® for each 7. If ¥ NS is c-closed for
each sphere S then 9 is locally c-closed. Evidently .5 is locally
c-closed if .97 is locally compact.

If & is a Fréchet surface of the type of a two-cell, let 8.5 be
the Fréchet curve defined by «|9% where « is a representation of &
on &. Let d(v,7) be the Fréchet distance between the Fréchet
curves v, and 7, each of the type of ‘the circle.

If 27 is a convex locally c-closed subset of m, if v is a simple
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closed curve in 5 and if 4 € & then

m(yp, 5% v) = liminf & (v, &)

d(d g5,7)-0

and

a(y, 2£7) = inf L(y, &)
39:7

where <7 is a polyhedron and .5”is a surface, each of the type of the
dise, and each is contained in 2 By Lemma 3.4 we can suppose
that each &7 in the definition of m(vy, 22, 7) is dpen non-degenerate.

Let T(.2¢7) be the set of all D-maps on & with range in .97 and
T(o% 7)) ={xe T(F)|x|0&e}.

LemMA 7.1. Let &7 be contained in . Then there exists a
sequence of polyhedra {P} contained in 2% with £#,— & and
& (¥, F) — L(vy, &).

Proof. Let us suppose that {aem|||a]|| < é} © 2 for some & > 0.
If 7 is a surface with representation « and if p is a positive number,
let 0.7~ be the surface determined by px. Now suppose that {<,}
is a sequence of polyhedra with <, — . and € (¥, &,) — L(4, ).
Then {<?,} can be chosen by Z, = (0&2,)/(0 + 2d(&Z,, &)). If 9% has
an interior point other than 0, a translation reduces the problem to
the preceding. If .5 has no interior point, let B be the space spanned
by % and let Ly(y, &) be the area defined by restricting sequences
of polyhedra approximating .&” to be in B. Since Ly(y, &) = L(v, &)
as in [17] and the argument applies to L the lemma is proved.

Now suppose &7 is contained in .9 and 8.5 = v. There exists
a sequence &#, of polyhedra contained in .2 such that & (v, &) —
L(y, ). Hence, [12], m(yr, 2% 7) < liminf & (v, &,) = L(y, &) and,
consequently, m(yr, 2%, 7) =< al(y, %, 7).

If G is an open connected set in the plane, if = {x‘} where each
2t is of class ¢, on G and if D(x) is finite, then x is of class &7, on G
[13]. If G is of class K, in particular, if G is the interior of a circle,
or the intersection of the interiors of two circles, then there exists
a function ® on 8G which plays the role of the boundary value function
for ©. We shall write ¢ |9G for @ and x(p) for @(p) for pecaG.

Let x be of class &#, on Int &. Then 2z is a simple cone-function
for £ on Int & if

sy 1215+ @ = pa, 2% ©,0
v g . p=(0,0

whenever ¢ is contained in the convex hull of £(0%). Now let « be
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of class &7, on a region J of class K. Then z is a cone-function for
2 on J if there exists a conformal transformation T from J onto &
such that 2 = wT and w is a simple cone-function for 27°. By some
remarks in §5,

D(w)]4 < D(z) < 4D(w) .

We require some slight modification of one of Morrey’s results.
Let C(P, r) be the open circle with center P and radius 7.

LEMMA 7.2. Let = be class &2, on C(0, R) with D(x) = M < oo,
Suppose there is a number k > 0 such that

D@ |C(0, 7)) = kED(H(x, 7)), 0<r<R,
whenever H(x, r) is a simple cone-function for x over C(0,r). Then
D(|C(0, 7)) < M(r[R)™ 0=r<R.

We use polar coordinates and let

vir) = D@ | €O, ) = | o[ liao, )1 + 010, 0) a0} .
Since + is absolutely continuous on [0, R],

() = [T 2, 0) I + 1] i, 0) 1140

for almost all » in [0, E].
Now we compute

D(H(@w, 1) = = | "ellla(r, )| + || u(r, 0)F1dods

< r—ﬁgo'g:"p[z-lgzxn zo(r, @) | d(p]zd,odﬁ + rzg Szo || (7, 6) ||* dodo

»
0

= 2 Tty 9 dpdpds + 2 autr, 0) a0
0Jo 0 0
< EH L0, ) [ de = 619/

for almost all 7, where we have made use of the fact that diam2(0%’) =
(length x| 8&”)/2.

Thus (r) < 6kry’(r) and (r~Yp) = 0.

The following lemma is usually stated for surfaces in Euclidean
space, but the proof, with trivial modifications, shows that it is true
for surfaces in m.

LEMMA 7.8. Let {<} be a sequence of Fréchet surfaces such that
d(0.%, v) — 0 where v ts a simple closed curve. Suppose that x, is
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a D-representation of &, on & such that {x,} satisfies the three point
condition and such that {D(x,)} is uniformly bounded. Then {x,|0% }
1S equicontinuous.

THEOREM 7.1. If T(.2% ) is not empty and if € < then there
exists xe T( 27, v) such that I(y, x) = inf {I(y,y)|ye T(3, v)}. In
addition, x is open mon-degenerate, A-r-quasi-conformal and can be
chosen to take three distinct points of 0% into three distinct points

of .

Proof. If 9% were a finite dimensional subspace of m then the
first statement would follow from the remarks [13; p. 45]. The proof
there is sufficient to permit .97~ to be a convex subset of a finite
dimensional space. This last condition may be deleted by replacing
[13; Th. 6.1] with Lemma 7.2. This part of the proof is essentially
the proof required for Theorem 7.2, and it is outlined after the state-
ment of that theorem.

If © were not open non-degenerate, there would exist a retraction
y of x, thus ye T'(>¢, v), which would be open non-degenerate. By
the representation theorem there would exist an A+r-quasi-conformal
conformal map 2, Fréchet equivalent to ¥ and taking three distinct
points of 8% into three distinct points of v, and we would have
1%, 2) = I(A¥, 2) = (A}, ) < L(A¥, ©) = I(A}, ©) < I(¥, o).

Similarly, the assumption that x is not A+-quasi-conformal leads
to a contradiction.

The theorem shows that there exists an open non-degenerate surface
& and a representation # of & which is A+-quasi-conformal such
that L(Av,.S”) = a(Av, 27, 7). Furthermore, under suitable conditons
on +,  has certain differentiability properties [13; Ch. VII].

THEOREM 7.2. Let v <. If m(Ay, 9% ,7) < o then there
exists an open mon-degenerate surface & with an Ay-quasi-conformal
representation x on & such that xe T(2%,7) and a(Ay, 5% ,7) =
m(Avy, 97, 7) = L(Avy, ).

Proof. Let {<#,} be a sequence of open non-degenerate polyhedra
in 2 with 07, — v and &€ (Av, £#,) — m(Ay, 5", v) = I. Then there
exist A+r-quasi-conformal representations y, of &, such that {y,}
satisfies the three point condition and I(¥, ¥,) < I + 1, for sufficiently
large n. Thus {D(y,)} is uniformly bounded and, by deleting some
terms if necessary, there is a function % such that ¥} converges weakly
in &, to y*. Since I(+, -) is lower semicontinuous with respect to this
convergence, I(y, y) = I and thus D(y) is finite and y is in &#,. That
there exists &k >0 for which D(x|J) < kD(H(x, J)), and H(x, J) is



330 EDWARD SILVERMAN

a cone-function for x over J, follows as in [13; p. 45]. With only
trivial changes, [13; p. 13, Th. 2.1] holds in our situation and it follows
that y is continuous on each closed subset of Int &°. That ¥ is con-
tinuous on a neighborhood of 8% is proved as in [13; pp. 43-44] except
that we must replace the harmonic functions used there by cone-
functions. Thus y is continuous on & and is in <7,, that is, y is a
D-map. That range ¥y C .2 and y |82 v follows from the fact that
range ¥y is contained in a suitably large sphere and .9 is locally c-
closed. Hence ye T(5%,7).

It is obvious that ¥ is open non-degenerate. Hence there exists
an A+-quasi-conformal funection z which is Fréchet equivalent to ¥
and takes three distinct points of 8z into three distinct points of 7.
By Theorem 7.1 there exists z € T'(.5¢, 7) taking the same three points
into the proper image points such that

I(, @) = inf {I(y, w) |we T(Z", 7} £ I(¥, 2) = I(Ay, 2) = I(Av, 9)
= m(A"-k’ ) = a’(A“—ﬁ, ) = I(A"?‘r %) < I("-ﬁ\y {17) .

Let .&” be the surface determined by .

Since each surface can be approximated arbitrarily closely in both
the Frechet metric and in A+-Lebesgue area, by polyhedra, it follows
that m(4Avy, 57, v) < liminf L(Av, .%,) whenever {<4} is a sequence
of surfaces in .2 such that d(0.%, v) — 0.

COROLLARY. Let {7,} be a sequence of Jordan curves in 5 with
d(Y., ¥) — 0. Then m(A+y, v) < liminf m(Av, 577, 7.)-
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