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l Introduction.. In the study of complex function algebras, it
is a standard technique to consider the functions as being defined on
the spectrum (maximal ideal space) of the algebra. In other words,
one routinely replaces a function algebra A by its Gelfand represen-
tation A. Recall that the Gelfand representation of a Banach algebra
is just the standard representation of any normed space A as a family
of functionals on A*. Each xeA is represented as the functional x
on points FeA* defined by x(F) = F{x). The Gelfand representation
simply restricts the domain of x to the very small set consisting of
those FeA* which are multiplicative (i.e., to the homomorphisms of
the algebra A). Of course this restriction is necessary if A is to be
again an algebra. However, a fair amount of structure accrues to
the representation by virtue of this restriction (cf. [17]).

To consider the standard example, let A be the algebra of con-
tinuous complex valued functions on the unit circle in the complex
plane which have analytic extensions to the unit disc. Then the
spectrum SA is (homeomorphic to) the disc, and the representation /
gives the analytic extension for each feA. Now consider the space
C of all continuous real functions on the unit circle. These functions
also have natural extensions, as harmonic functions, to the unit disc.
It follows that the disc is embedded as a compact subset Σ of C*, and that
the harmonic extensions appear as functionals on C * restricted to this
set Σ. In this setting, the disc is not a unique set to which the
functions extend "naturally," since the circle can be put on other
Riemann surfaces on which the Dirichlet problem is solvable.

In this paper we present axioms for a subset Σ of C*, where
C = C(Γ) for an arbitrary compact space Γ, so that the representation
described above does give an effective generalization of the classical
potential theory on the disc or sphere in %-sρace. The theory we
develop in this way is quite different in intent from those developed
in recent years by Bauer, Brelot, and others (cf. [1], [2], [7]). In par-
ticular, we start with assumptions which insure that a global Dirichlet
problem is automatically solvable.

Our set Σ in C* consists of positive continuous functions z on Γ
weighting a given positive measure μ on Γ. That is, we restrict the
canonical representation of C as functionals on C* to a subspace of
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C* consisting of functionals of the form zμ, where for each ueC we
have (zμ)(u) = \uzdμ. The functionals zμ are generalizations of the
Poisson measures on the circle or sphere, and the representation u
on Σ obtained for each u e C is a generalized solution of the Dirichlet
problem with boundary value u. A surprising amount of the classical
theory of harmonic functions on the disc or sphere turns out to depend
on the purely topological assumptions we make.

2 Basic assumptions^ We list here a set of assumptions and
some notation which will be used throughout.

Let Γ be a compact Hausdorff space with topology J7~.
Let C = C(Γ) be the linear space of all continuous real-valued

functions on Γ, with the topology ^~u of uniform convergence. The
uniform norm in C is denoted \\u\\.

Assume there is given a positive probability measure μ on the
Baire sets of Γ. In addition, we are given a set Δ of strictly posi-
tive continuous functions z on Γ such that

(1) \z(θ)dμ(θ) = 1

for all zeΔ. The function identically one is assumed to be in Δ, and
is denoted z0: zQ(θ) = 1. Hence the measures zμ, for zeΔ, are func-
tionals of norm one in C*9 and include μ = zoμ.

We want to extend the functions u e C to a compact set con-
taining Γ, and consisting of Γ and the points represented by the
continuous kernels zeΔ. We do this by representing C as a space of
continuous functions on a subset of C* consisting of evaluation func-
tionals, and the functionals zμ. Accordingly, define Γ* = {eθ: θeΓ}9

where eθ(u) = u(θ) for all ueC. Similarly, let Δ* = {zμ: z e Δ}, where
zμ(u) = \uzdμ for all ueC. We let Σ* = Γ* (J Δ*, and introduce the

axioms below on Σ*, A*, Γ* and μ. Unless otherwise specified, the
topology in C*, and subsets thereof, is the w* topology, ^"*.

Axiom 1. Σ* = J* U Z1* is a compact set in C*.
Axiom 2. Γ* is the boundary of A* in Σ*.
Axiom 3. The mapping z—>zμ is a homeomorphism of A, ^"u

onto A*, j ^ ~ * .
The representation of C as functions on Σ* is as follows: for each

u e C, we define ΰ on I7* by

That is, ΰ(eθ) = u{θ) for θ e Γ, and ΰ(zμ) = vuzdμ for zeA. For sim-

plicity we will denote the points of J* as z rather than zμ, and write
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( 3 ) u(z) = \u(θ)z(θ)dμ{θ) (zeΔ) .

We let H denote the space of all functions u on 2'*, for ue C.
Axiom 1 merely expresses the fact that we want a compact ex-

tension of our given space Γ (or its homeomorphic image Γ1*). The
second axiom makes it clear that the Silov boundary of our linear
space H is in fact a bona fide topological boundary (cf. [5, p. 229], [2]).
Although Axiom 3 appears to be quite strong, it turns out to be exactly
the necessary assumption for a theory with jointly continuous kernel.
Notice that the axioms above are satisfied in the classical case which
we shall consider our model: Γ is the unit circle in the plane, μ is
the normalized Lebesgue measure, and Δ is the set of Poisson kernels.

LEMMA 1. 21* is Hausdorff. Γy jf is homeomorphic to Z1*,
Each ΰe H is continuous on 21*.

Proof. The subspace 21* is Hausdorff since C* is. If θn—>θ in
^~, then certainly u{θn)—>u{θ) for all ueC, or ββfi—>ββ in ^"**. The
mapping θ —> ed is therefore a continuous one-to-one mapping on a
compact space to a Hausdorff space, and hence a homeomorphism.
The w* topology on C* is by definition the weakest such that the
functions ΰ of (2) are continuous. Therefore the functions ΰ are in
particular continuous on the subset Σ*.

LEMMA 2. H is a uniformly closed linear subspace of C(Σ*)
and H contains the constant functions.

Proof. The functionals of Σ* are all of norm one, by (1), and
the restriction H | JΓ* can be identified with C on Γ. Hence uniform
convergence on Γ1* is equivalent to uniform convergence on all of Σ*,
and H is in fact isomorphic and isometric with C. The constant func-
tions are in H since c(z) = c for all zed, by assumption (1).

Our axioms are given in terms of Γ* and J* as subsets of C* to
facilitate the description of a topology on the union .Γ* U Δ*. How-
ever, the embedding Γ U i - ^ Γ * U Δ* is one-to-one, as we shall show
in Lemma 5. It follows that we can consider our assumptions as
statements about a given compact set Γ and a distinguished subset
Δ of C(Γ). Accordingly, we will drop the stars from Γ1* and Δ*9

and regard Σ = Γ U Δ as the object under consideration. The points
of Σ are the points θ of Γ, and the points (functions) z of Δ. The
topology J ^ * on Σ coincides on Γ with the given compact topology
J7~, and on Δ with the uniform topology J7~u of C relativized to Δ.
We write ΰ(θ) = u{θ) for θeΓ, and u{z) = \u{θ)z{θ)dμ{θ) for zeΔ.
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LEMMA 3. // ΰ(z) = 0 for all zeΔ, then u = 0. If ΰ(z) ^ 0 for
all ze Δ, then u ^ 0.

Proof. Both of these statements are immediate from the facts
that Δ is dense in Σ (Axiom 2), and the functions ΰ are continuous
on Σ.

LEMMA 4. If U is a nonempty open set in Γ, then μ(U) > 0.

Proof. Assume that μ(U) = 0 for some nonempty open set UczΓ.
Let u be a function in C such that u = 0 outside U, and u ^ 0.

Then for every 2GJ, i&(s) = iwzcϊμ^O, since u = 0 off ί7, and μ = 0

on Ϊ7. This contradicts Lemma 3, and proves the statement.

LEMMA 5. The mapping Γ U ^ f * U 4 * = ί* is one-to-one.

Proof. The representation of a functional in C* as a measure
on Γ is of course unique. The lemma asserts that the representation
of this measure in the form zfi for continuous positive z, or the form
eθ (unit point mass at θ), is unique. This is clearly the case if (and
only if) the support of μ is all of Γ.

Since Σ — Γ U Δ consists of distinct functionals in C*, H is a
separating linear subspace of C(Σ). Such a subspace has a Silov
boundary in Σ; i.e., a unique minimal closed set Y in Σ such that
each ΰeH attains its maximum on Y. ([2], or for an elementary
proof, [4]). Since each functional ζ e Σ has norm one, it is clear that
each ΰeH attains its maximum on Γ. Moreover, H\Γ = C(Γ), so Γ
is a minimal closed set with this property. We have proved the fol-
lowing:

THEOREM 1. The Silov boundary for H in Σ is the topological
boundary Γ of Δ in Σ.

It is of course true by definition that a maximum principle holds
for the functions in H and the Silov boundary Γ. The fact that μ
is supported by all of Γ, which follows from the fact that Γ is the
topological boundary of Δ, allows us to sharpen the maximum principle
to strict inequality. This situation also occurs in some function alge-
bras (cf. [3], [13]).

THEOREM 2. (Strict maximum principle) If ΰ{z) = \\ΰ\\ for some
z G Δ, then ΰ is a constant.

Proof. Assume t h a t u{z) = \\ΰ\\ = \\u\\, and t h a t u is non-constant
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and hence u is non-constant). Let u(θ) = \\u\\ — v(θ), where v(θ) ̂  0
and v is not identically zero. Let v(θ) Ξ> ε > 0 for all θ in some open
set UaΓ. Then

u(z) = \u(θ)z(θ)dμ(θ)

= \[\\u\\-v(θ)]z(θ)dμ(θ)

= \\u\\-^v(θ)z(θ)dμ(θ)

S \\u\\ — εμ(U) min z

< \\u\\ .

This contradicts the assumption that ΰ(z) = \\u\\. Hence u and ΰ are
constant.

COROLLARY. If ΰ ^ 0 on Σ and ΰ(z) = 0 for some ze Δ, then
ΰ = 0.

Proof. If v = || u || — u, then v = \\u\\ — ΰ, and v assumes its
maximum, \\u\\, at the point ze Δ. Hence v is a constant, and ΰ = 0.

THEOREM 3. Δ is closed in C if no singleton in Γ is open and
closed. In particular, Δ is closed in C if Γ is connected.

Proof. Let {zn} be a sequence of distinct functions in Δ which con-
verges uniformly toweC. We must show that we Δ. The uniform con-
vergence of the zn implies that the functionals znμ converge in J^~*
to wμ. Since Σ is compact in the w* topolgy, wμeΣ. Thus either
we Δ and we are done, or wμ is evaluation at some θ0e Γ, for all
ueC. For wμ to be unit point mass at θ0, we must have μ{θ0} > 0,
w(θo) > 0> and w = 0 on Γ — {#0}. This implies that {#0} is open, since
w is continuous; {#0} is automatically closed since Γ is Hausdorff.

The following example, which gives the natural "potential theory"
in one dimension, shows that the hypothesis on Γ in Theorem 3 is
necessary.

EXAMPLE. Let Γ consist of the two points —1 and 1, with the
discrete topology. Let μ assign mass 1/2 to each point. We denote
functions % on Γ by pairs, u = (α, 6), where a = u{—1), 6 = ^(1).
The family Δ will consist of the functions zx = (1 — x, 1 + x), for
— 1 < x < 1. The function z0 is identically one, and for each function
zn we have

Γ 1 1
\zxdμ = (1 — x) — + (1 + x) — = 1 .
J 2 2
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The family Γ* U Δ* is clearly homeomorphic to the compact interval
[—1,1], and Γ* is the boundary of 4*. Here Δ is not closed in C(Γ),
since the function (0, 2) is the uniform limit of functions (1 — x, 1 + x}
as x —• 1. The functions ΰ can be represented as follows: if u = (α, b)r

then

ΰ(zx) = \uzβdμ

Hence the graph of u is the line joining (—1, α) and (1, 6), and u(zx}
is the point on this line above x.

3* The harmonic functions on Δ. In this section we extend our
class H to a class of functions which are "harmonic" on Δy without
necessarily being continuously extendable to all of Σ. We show that
the kernels P(z, θ) = z(θ) are harmonic in z for each fixed θ, and
that they are extreme points of certain compact convex sets of har-
monic functions. With one additional assumption on Δ, which holds
in the classical case, we show that the set of differences of positive
harmonic functions is isomorphic and homeomorphic with C*.

LEMMA 6. If P(z, θ) = z{θ) for all zeΔ, all θe Γ, then P is
jointly continuous on Δ x Γ with the product topology.

Proof. The statement of the lemma holds for any family (here Δ)
of continuous functions on a compact space, with the uniform topology
[14, p. 224].

In connection with the above lemma, it is worth noting that the
uniform topology is the weakest such that P is jointly continuous.
Thus Axiom 3 is necessary if we are to develope a theory based on
the idea of a jointly continuous kernel.

With the above definition of P, the representation (3) for func-
tions ΰ £ H can be written in the familiar form

(4) ΰ(z)= \^u(θ)P(z, θ)dμ(θ) .

DEFINITION. Let W be the topology of uniform convergence on
compact subsets of Δ (the u.c.c. topology, or compact-open topology).
Let Sίf denote the ^-closure of H\Δ. That is, £ίf is the set of all
u.c.c. limits on Δ of functions in H. The functions in £έf will be
called harmonic. The set ^f forms a locally convex real linear
topological space with the topology ^ , since the basic neighborhoods*
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of zero, {v: sup^ | v(z) | < ε}, are convex.
We interrupt our development here to point out explicitly that

the family έ%f just defined is the set of all harmonic functions in
the classical case.

PROPOSITION. If Γ — {z: | z \ = 1}, Δ is the set of Poisson kernels
on Γ (or the open unit disc {z: \ z | < 1}, and μ is normalized Lebesgue
"measure on Γ, then £ίf is the set of all functions on Δ which are
harmonic in the classical sense.

Proof. The proposition is simply the observation that every
harmonic function on the open unit disc is the u.c.c. limit of harmonic
functions continuous on the closed disc. To see this, let v be harmonic
on Δ, v + iw be analytic on Δ, and {pn} be a sequence of polynomials
in z which converge u.c.c. to v + iw on Δ. Then the continuous
harmonic functions {Repn} converge u.c.c. to v.

LEMMA 7. Δ is locally compact, and each harmonic function is
continuous on Δ.

Proof. For each z e Δ there are disjoint neighborhoods U and V
in Σ such that z e U and Γ a V. Hence U~ is compact, and each
point of Δ has a compact neighborhood U~ c Δ. Since a harmonic
function is a uniform limit of continuous functions on some (compact)
neighborhood of each ze Δ, each v e 3(? is continuous on Δ.

LEMMA 8. If K is a compact subset of Δ, then K is an equi-
continuous family of functions on Γ. The functions in K are uni-
formly bounded, and uniformly bounded away from zero.

Proof. Since K c Δ, the hypothesis is that K is compact in the
uniform topology S~u. K is therefore a bounded set in the norm || ||
of J7~u, which means the functions ze Kare uniformly bounded on Γ.
If the functions in K were not uniformly bounded away from zero,
then there would be a limit point z e K, since K is compact,
with minimum value zero. This minimum value would be attained
on the compact set Γ, which contradicts the assumption that all ze Δ
are strictly positive. The set K is equicontinuous since the uniform
topology ^~u is jointly continuous, and Kis compact in ̂ ~u [14, p. 233].

DEFINITION. We will let H+ denote the nonnegative functions in
H, and Jg^+ the closure in ^ of H+ \ Δ.

THEOREM 4. (Harnack's inequality—see e.g. [8, p. 153]) If K is
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a compact subset of Δ, then there are positive numbers m and M
such that for every v e

( 5) mv(z0) ^ v(z) ^ Mv(z0)

for all zeK.

Proof. Recall that the function z0 in (5) in identically one: zo(θ) =
1. We prove that the inequality (5) holds for every ΰeH+, and then
the theorem follows by taking uniform limits on the compact set
K U {s0}.

Assume that u Ξ> 0 on Γ, and let min z = min {z(θ): θ e Γ}. We
have

mm zu\(z0) = mmz\u ldμ

^ \uzdμ

= ΰ(z)

£\\z\\\u-ldμ

If m is a uniform lower bound for the functions z e K, and M is a
uniform upper bound, then we have

mΰ(z0) ^ ΰ(z) ^ Mΰ(z0)

for all zeK, all ΰeH+.

COROLLARY. (Harnack's second convergence theorem) // {ΰn} is
an increasing sequence of functions in H+, and {ΰn(z)} is bounded
for any z e Δ, then {ΰn} converges u.c.c. on Δ.

Proof. Suppose that ΰn(z) g B for all n, so that the positive
series Σ [ϋn(Zi) — ̂ n-iCO] converges. Let K be any compact set in
Δ and let m and M be the constants of Theorem 4 for the set K U {z^.
Then from (5) we have

and hence for all zeK,

— [ΰ
m

M _

K
mTherefore the series Σ [̂ »(̂ ) ~~ ̂ »-i(^)] converges uniformly on K.
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Since K is arbitrary, this says that {ΰn} converges u.c.c. on Δ.
Notice that the corollary is stated for H+, rather than ^f+.

This is because it is not clear that if v, w e ^g^+, and v — w ^ 0, that
v — we £ϊf+, as would be required in the above proof (βέf+ is defined
as the set of limits of H+, and not as the positive functions in έ%f).

Now we can prove that the kernel P(z, θ) is harmonic in z for
each fixed θeΓ, and moreover, that each P{-,θ)e

THEOREM 5. // θoeΓ9 then P( ,θo)

Proof. Let if be a compact subset of Δ, and ε > 0. We must
find n e H+ such that

| ΰ(z) - P(z, θo)\<e

for all zeK.
Since K is an equicontinuous family, there is a neighborhood U

of θ0 in Γ such that | z(θ) - z(θQ) \ < ε f or all z e K and all θeU. Let
u be a nonnegative continuous function on Γ such that u = 0 off U>

c

and \udμ = 1. For z e K we have
J

! ΰ(z) - P(z, β0) | = | ^u(θ)z(θ)dμ(θ) - z(β0)

- z(θo)]dμ(θ)

^ sup | z(θ) - z(θ0) | f

Since K and ε are arbitrary, and ΰ ^ 0, P( , ̂ 0)
The next two theorems are extensions to our abstract setting of

classical results of Herglotz [11], Bray-Evans [6], Evans [9], and
Martin [15, p. 153].

THEOREM 6. A function v on Δ is in β^+ if and only if there is
a positive Baire measure v on Γ such that for all ze Δ,

(6) v(z) = JP(«, θ)dv{θ) .

Proof. Assume first that v is given by (6). The integral in (6)
can be approximated at any finite number of points z e Δ by a Riemann
sum of the form

( 7 )

Any function of the form (7) is in £έf+ by Theorem 5. The set of
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functions of the form (7) is equicontinuous on Δ, since

| ΣP(z, Θ

= \\z-z1\\v(Γ).

That is, any function of the form (7) will vary by less than ε on the
sphere of radius s/v(Γ) around zλ. Therefore pointwise convergence
of sums (7) will be uniform on any compact set KcΔ [14 , p. 232].
Hence v is in the ^-closure of the ^-closed set J%f+; i.e., v e βέ?+.

Now assume that v e £έ*+, and let {ΰa} be a net of functions in
H+ which converges uniformly on compact sets to v:

v(z) — lim ΰΛ(z)

= lim \p(z, θ)ua{θ)dμ(θ) .

The measures {uωμ} are all in some closed ball of C*, since

II uaμ || = \ua{θ)dμ{θ) = u«(z0) — v(z0)

(recall that zo(θ) = 1). The closed balls in C* are ^~* compact, so
there is a subnet of {uΛμ} which converges w* to a positive measure
v. For this subnet, also denoted {u^μ}, and the continuous function
P(z, •) on Γ, we have

v(z) = lim [p(z, θ)ujφ)dμ(θ)
j

(«, θ)dv{θ) .

COROLLARY. V G J T + - Jg^+ if and only if v = [pdv for some

signed Baire measure v.

DEFINITION. HM = lΰeH: [\u\dμ ^ M\. Let j%?M be the <%r-

closure of HM \ Δ.

The hypothesis v^§ίfM is our replacement of the classical Fatou

| v{reid) \dθ ^ M
for all r < 1 (Fatou [10] or [16, p. 201]). If Γ = {z: \z\ = 1}, Δ is
the set of Poisson kernels, etc., so the classical situation obtains, then
£ί?u is the set of harmonic functions v such that the functions vr are
uniformly bounded by M in the Lx norm, where vr{eid) = v(reίθ) (see
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[12, pp. 33-39]). The families Sίfu are compact sets of harmonic
functions (Theorem 8 below), and this compactness accounts for much
of their tractability.

LEMMA 9. For each θoeΓ, P( , θo)e £έf[.

Proof. In the proof of Theorem 5 (that P( ,θo)e <%"+) we found for

a given compact K c Δ a function ΰ e H+ such that | ΰ(z) — P(z, ΘQ) | < ε

for all zeK. This function ΰ was in Hl9 since u ^ 0 and \udμ = 1.

Thus P( ,0O) is the u.c.c. limit of functions in Hu or P( yθQ)e ^fx.
For the following theorem in the classical context, see [18, p. 143]

or [12, p. 33].

THEOREM 7. A function v is in 3$fM if and only if there is a
signed measure v on Γ, with \\v\\ ̂  M, such that for all zeΔ,

\ i ) υ\z) -

Proof. Assume that v e βέfMj and that {ΰa} is a net of functions
in HM which converges uniformly to v on compact subsets:

v(z) = lim ΰa(z)

= lim \p(z, θ)ua{θ)dμ{θ) .

The measures {uaμ} are all in the Λf-ball of C*, since by hypothesis

\\uωμ\\ = [\uΛ\dμ ^ M .

As in the proof of Theorem 6, there is a w* accumulation point v of
{uaμ}y and \\v \\ ^ M. If {uaμ} is a subnet converging w* to y, then

φ ) = lim [p(z, θ)u«{θ)dμ{θ)

= j P(z, ̂ )dv(^)

for each «e Δ.
Now assume that | | μ | | ̂  ikί and v is given by (7). We showed

in the proof of Theorem 6 that v can be uniformly approximated on
any compact Kc Δ by a finite sum ΣP( fθ^)v{E^f where {E%) is a
partition of Γ. By Lemma 9, each P( , 0<) occuring in this sum can
be uniformly approximated (within ε/w||v||, if there are n summands)
by a function Ui e Hλ fl i ί + . Hence there is a sum ̂  = Σv{Ei)ΰi which
is uniformly close to v on the given compact set K. Clearly w e H,
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and we have

s
H.

w\dμ ^

=

VII

—

S. BEAR

Σ v(Ei)

IMI
M.

Thus w e HM, and v can be uniformly approximated on K by functions
in HM, so ve

COROLLARY. £έf+ — <%*+ = \}{gerM: M = 1, 2, •}.

Proof. This follows from the corollary of Theorem 6

LEMMA 10. HM is equicontίnuous on A.

Proof. If zfz1eA and u e HM, then

| ΰ(z) - ΰ{zx) | - | \u{θ)[z{θ) - φ)\dμ(θ)

^\\z-z1\\\\n{θ)\dμ{θ)

THEOREM 8. έ%?u is compact in the topology %f.

Proof. The pointwise closure (and, a fortiori, u.c.c. closure) of
an equicontinuous family is equicontinuous, and hence Sίfu is equi-
continuous. By Ascoli's theorem [14, p. 233], the subfamily 3^fu of
C{Δ) is compact in the topology ^/ if and only if ^ίf^ is closed, J g ^
is equicontinuous, and Mz): v^3ίfM} is bounded for each zeA. We
have only the last condition to check. For each ze A, {\ v(z) \: ve
is bounded by Λf| |2| |, since for UQHMJ

\ΰ{z)\^\\u{θ)\z{θ)dμ{θ) ^ M\\z\\ ,

and this estimate carries over to SίfM on the compact set {z}.

COROLLARY. Sίf^ — ̂ g^+ is σ-compact.

Proof. This follows from the corollary of Theorem 7.

In the classical case of the unit ball in Euclidean space, the corre-
spondence between functions in £έf+ — J%f+ and measures is one-to-
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one. The proof uses the specific form of the Poisson kernels [18, p.
143, 144], The uniqueness of a representing measure v is of course
equivalent to the non-existence of a nontrivial measure orthogonal to
all the functions ze A. Restated, the measure corresponding to a
function in J%f+ — ̂ f^ is unique if the linear span of A is uniformly
dense in C. We incorporate this hypothesis in the next theorem to
make the statement explicit for the classical case.

THEOREM 9. // the linear span of A is uniformly dense in C,

then the isomorphism v-^\Pdv is a homeomorphism of C* onto

Proof. As noted above the hypothesis contains the assumption
that the mapping is one-to-one. Since this isomorphism maps the
compact M-ball of C* onto the compact set <%% it is sufficient to
show the mapping is continuous in either direction. We will show
the mapping v—* v from £έf+ — J%f+ to C* is continuous. Let va—*v
in the topology ^ , and let va, v be the corresponding measures. Then

\zdvΛ-+\zdv for all zeA. Since the linear span of A is uniformly

dense in C, we have \gdvΛ—*\gdv for every continuous g, or va-+v

in ^~*.

COROLLARY. The extreme points of £ίfx are the functions ± P ( , θ)9

for θ e Γ.

Proof. These are the images under the isomorphism above of
the unit point masses on Γ which are the extreme points of the unit
ball of C*. (The positive extreme points are the minimal positive
harmonic functions of R. S. Martin [15].)
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