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Let (X, ^ , m) be a finite or σ-finite and non-atomic measure
space. A set B is said to be measurable if it is a member of ^ .
Two measures on &, finite or σ-finite (one may be finite and the
other cr-finite), are said to be equivalent if they have the same null
sets. In this paper we consider a one-to-one, nonsingular, measurable
transformation Φ of X onto itself. By a nonsingular transformation
Φ we mean m(φB) = m{φ~ιB) — 0 for every measurable set B with
m(B) — 0, and by a measurable transformation Φ we mean φB e £&
and 0-\B e & for every B e &. We shall say that the transformation
Φ is measure preserving (with respect to a measure μ) or equivalently,
μ is an invariant measure (with respect to the transformation Φ) if
μ(φB) = μ(Φ~λB) = μ(B) for every measurable set B.

A recurrent transformation is a common notion in ergodic theory.
This is a measurable transformation Φ defined on a finite or σ-finite
measure space (X, &, m) with the following property: if A is a
measurable set of positive measure, then for almost all xeA Φnx
belongs to A for infinitely many integers n. It is not difficult to
see that every measurable transformation which preserves a finite
invariant measure μ equivalent to m is recurrent. The converse
statement is not in general true; for example an ergodic transforma-
tion which preserves an infinite and σ-finite measure is always re-
current yet it does not preserve a finite invariant equivalent measure.
In this paper we restrict the notion of a recurrent transformation.
We introduce the notion of a strongly recurrent set and define a
strongly recurrent transformation. We show that a transformation
Φ is strongly recurrent if and only if there exists a finite invariant
measure μ equivalent to m (Theorem 2). This is accomplished by
showing the connection between strongly recurrent sets and weakly
wandering sets (Theorem 1). Weakly wandering sets were introduced
in [1], and the condition that a transformation Φ does not have any
weakly wandering set of positive measure was further strengthened
(see condition (W)* below). It was shown in [1] that this stronger
condition was again a necessary and sufficient condition for the
existence of a finite invariant measure μ equivalent to m. We show
that a similar strengthening for a strongly recurrent transformation
is false for a wide class of measure preserving transformations defined
on a finite measure space (Theorem 3).

DEFINITION. A measurable set S is said to be strongly recurrent
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(with respect to Φ) if the set of all integers n such that m(ΦnS Π S) > 0
is relatively dense, i.e., if there exists a positive integer k such that

(1) max miΦ^S Π S) > 0

for tι = 0, ± 1 , ± 2 , •••. This condition is obviously equivalent to the
following:

( 2 ) m([J φn-ιS Γ\ S) > 0
\i=0 /

or

( 3 )

for % = 0, ± 1 , ±2, , This last condition means that there exists
a finite number of images of S by the powers of Φ such that any
image of S by any power of Φ has an intersection of positive measure
with at least one of them.

The transformation Φ is said to be strongly recurrent if every
set of positive measure is strongly recurrent. We note that the
property of a transformation Φ being strongly recurrent is preserved
under equivalent measures.

The following notion was introduced in [1]: A measurable set W
is said to be weakly wandering (with respect to Φ) if there exists a
sequence of integers {nk: k = 1, 2, •} such that the sets Φnjc W,
k = 1, 2, are mutually disjoint.

THEOREM 1. Let (X, ^ , m) be a finite or ^-finite measure
space, and let Φ be a one-to-one, nonsingular, measurable transfor-
mation of X onto itself. Then the following two conditions are
equivalent:

(W) m(A) > 0 implies that there exists at most a finite number
of mutually disjoint images of A by the powers of Φ; in other words,
A is not weakly wandering.

(S) m{A) > 0 implies that A is strongly recurrent.
We first prove a Lemma which is by itself of some interest.

LEMMA 1. Let {X, &, m) and Φ be as in Theorem 1, and let
A be a measurable set of positive measure such that

(4) lim inf m(ΦnA) = 0 .

Then given ε with 0 < ε <m(A), there exists a measurable subset A!
of A with m{Af) < ε such that the set S = A — A! is not strongly
recurrent.
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Proof. Let A be a measurable set with m(A) = a > 0 and
lim inf m(ΦnA) = 0. Let ε be a positive number with 0 < ε < a. Let

for k = 1, 2, . Next, for each & = 1, 2, we choose a positive
integer wfc such that

for ί — o, 1, 2, , k - 1. This is possible since Φ is nonsingular and
(4) is satisfied by A. Let us put

Then

oo Jc — 1 °°

k=l i = 0 k = l

Let S = A — A', then it is easy to see that

φnk~ig f) S a Φnk~ιA Π (A — Af) = Φ

for i = 0, 1, 2, , k — 1 and k = 1, 2, . This shows that S is not
strongly recurrent.

Proof of Theorem 1. If a measurable set S of positive measure is
not strongly recurrent, then it is possible to find a measurable subset
N of S with m(N) — 0 such that S' = S — N is weakly wandering.
This is easy, since S not strongly recurrent means that for each
positive integer nk there exists another positive integer nk+1 such that

m(V + 1 S Π U Φ*S) = 0 .
\ i=0 /

In this way we may obtain a sequence of integers {nk: k = 1, 2, •}
such that

^ * * S Π Φn>'S) = m ( S n Φn*-niS) = 0 f o r k ^ j .

It follows that S' = S — N is weakly wandering, where

# = ϋ \jΦnk-niSns

and m(iV) = 0.
Conversely, let W be a weakly wandering set of positive measure.
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Since the measure space is o -finite we can find a sequence of measur-
able sets {At: i = 1, 2, •} which are mutually disjoint, such that
0 < m(Ad < oo for i = 1, 2, and X = \Jΐ=i At. We let

t^pV tor Be& .
i=ι 2tm(Ai)

I t follows t h a t m' and m are equivalent. Since φn*W,k = 1,2, •••

are mutually disjoint and m'{X) < co it follows t h a t lim inf m'(φn W) =
n—>oo

0. Thus, whether m is finite or (/-finite, the set W satisfies (4) with
m replaced by the equivalent and finite measure m\ By applying
Lemma 1 we obtain a measurable subset S of W such that m'(S) > 0
and S is not strongly recurrent. Since m and m' are equivalent,
this proves the theorem.

THEOREM 2. Let (X, &, m) and Φ be as in Theorem 1. Then
condition (S) is equivalent to the existence of a finite invariant
measure μ equivalent to m.

Proof. Theorem 2 is an immediate consequence of Theorem 1
above and Theorem 1 of [1], where it was shown that condition (W)
is equivalent to the existence of a finite invariant measure μ equivalent
to m.

In [1] it was further shown that the following condition:
(W)* Given ε > 0, there exists a positive integer N such that

m(A) ^ ε implies that there exists at most N mutually disjoint
images of A by the powers of T,
is again a necessary and sufficient condition for the existence of a
finite invariant measure μ equivalent to m (see condition (V)*f

§3 of [1]).
Condition (W)* is in appearance a stronger condition than condi-

tion (W). We note that in condition (W)* the positive integer N depends
on ε only and not on the measurable set A. However, it turns out
that these two conditions are equivalent to each other and are in
turn necessary and sufficient conditions for the existence of a finite
invariant measure μ equivalent to m (see Theorem 1 of [1]). By
analogy, we may attempt to strengthen condition (S) in the following
manner:

(S)* Given ε > 0, there exists a positive integer N such that
m(A) ^ ε implies

m(φnA n\j Φ*A) > 0 for n = 0, ± 1 , ±2,
V <=o /

We show that condition (S)* is not a necessary condition for the
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existence of a finite invariant measure μ equivalent to m. In fact,
we shall show that for any ergodic measure preserving transforma-
tion φ defined on a finite measure space (X, ^ , μ) condition (S)* is
not satisfied.

We say that a transformation Φ is ergodic if ΦA = A implies
m(A) = 0 or m(X - A) = 0.

LEMMA 2. Let (X, ^ , μ,) be a finite or σ-finite measure space,
and let Φ be an ergodic measure preserving transformation defined
on it. Then given ε > 0 and a positive integer iV>0, there exists a
measurable set C with μ(C) ^ ε such that

X - C = Q W
ΐ=0

for some measurable set E where E, φE, , φN~1E are mutually
disjoint.

Proof. Given ε > 0 and an integer N > 0, let F be any measur-
able set with 0 < μ{F) ^ e/N. Let

Fx = φ-'F - FQ

F2 = φ~2F - F o U ί 7 !

and in general

Fn = ψ~nF - X) Fά for n = 1, 2, .
io

It follows
more;

We let

that Fn

Φ

* . = .

> n

777

Pin

= 0

- = ί

, 1 ,

71

n-k

2,

F

• are

for k

and n

mutually

= o, .-.,*
= 0, 1, 2,

disjoint,

. . . .

i i V - l

- U Φ~~jF
3=0

and further-

then

^ ^ c FtN-k for Jfc = 0, 1, , iiV; and i = 1, 2,

which implies that the sets

( 5 ) φhE% for fc = 0,1, .- ,ΐΛΓ; and ί = 1,2, . . .

are mutually disjoint.
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Next we let

E=(jEί

and

C = X - \)ΦkE .

It follows from (5) that E, φE, , φN~xE are mutually disjoint, and

μ(C) = μ(x - XjΦkE) ^ Nμ(F) £ ε .

THEOREM 3. Let Φ be on ergodic measure preserving transforma-
tion defined on a finite measure space (X, &, μ) with μ(X) = 1.
Then condition (S)* is not satisfied.

Proof. Let ε — lj(q + 1) for some positive integer q > 3. Let
k > 1 be an arbitrary positive integer. We show that there exists a
measurable set A with μ(A) ̂  ε and

= 0

for some integer nk > k. Let us put N = qk. Then by Lemma 2
there exists a measurable set E with E, φE, , φN~1E mutually dis-
joint and

Since μ(X) = 1, this implies 1 - Nμ(E) ^ ε or μ{E) ̂  (1 - ε)/JV.
Let

Since k = JW/? we have

1
1 -

q N q q +

and

( k—1 # \ /nk + k~λ ^ 2k—2 ^ \

i=0 / \ ί = ̂  *=0 /

for some nk where 2k <nk < (q — l)k = N — k.
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This shows that condition (S)* is not satisfied since ε is fixed, k
is arbitrary, and nk > k.
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