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1. Introduction. Throughout this paper 4 =0,a,d, -+, 4 =20,
a, B, ---and G will be abelian partially ordered groups (p.o. groups). G
is a p.o. extension of A by 4 if there is an order preserving homomorphism
(o-homomorphisn) 7 of G onto 4 with kernel A such that 7 induces an
o-isomorphism of G/A with 4, (i.e. w(g) > 6 implies g + A contains a
positive element). If A and 4 are lattice ordered groups (I-groups)
then G is an l-extension if G is an l-group, 7 is an l-homomorphism
and 7 induces an l-isomorphism between G/A and 4. In this case 4
is an l-ideal of G.

If G is a p.o. extension of A by 4 then for each & € 4 choose () e G
such that z(r(a)) = @ and r(d) = 0. Define

fla,B) = —r(a+ B) + r(@) + r(B) for all a,Bec 4

and
Q,={acA|r(@) +a=0} for aed ={0ecd|do=6}.

Then the following conditions are satisfied for all «, 8, v in 4.

(i) A, B =fB a)

(ii) Aea, 6)=f0,x)=0

(iii) fla, B) + fla + B,7) = fla, B+ 7) + f(B, 7).

Moreover, for «, 8 € 4+ we have

(iv) Qu#¢

(V) Qo+ Qs+ fla, B) & Quip

(Vi) Qo= A*.

Conditions (iv)-(vi) are due to L. Fuchs and can be derived from the
results in [5].

Now if G=A x 4 and we define (&, @)+ (b, B)=(a + b + f(a, B), a + B)
and (e, a) positive if a¢e 4™ and ac@Q,, then the mapping (a, a)—
r(@) + a is an o-isomorphism of G onto G. In what follows we usually
identify G and G.

Conversely, if weare given 4, 4, f: 4 X 4—A and Q: 4*—{subsets of A}
such that f and Q satisfy (i)-(vi) then G is a p.o. extension of A by
4 and the mapping (@, @) — a is the corresponding o-homomorphism.

Two p.o. extensions G = (4, 4,f,Q) and G = (4, 4,f’, Q") are
o-equivalent if there is a function ¢: 4— A such that

Received July 25, 1963. This research was supported in part by grant No. 21447
from the National Science Foundation and represents a portion of the author’s disser-
tation. The author wishes to express his appreciation to Professor L. Fuchs, who suggested
the problem, and Professor P. F. Conrad for their help in preparing this paper.

709



710 J. ROGER TELLER

S, B) = fla, B) — Ha + B) + Ha) + ¢B)
and
Q.= —ta)+ Q.

This is equivalent to the fact that there exists an o-isomorphism of
G onto G’ that induces the identity on A and G/A = 4.

In Theorem 1 we give necessary and sufficient conditions that a
p.o. extension G = (4, 4, f, Q) be an l-extension. If G is an l-extension
such that for each a € 4%, Q,, is a principal dual ideal, that is, generated
by a single element, then Lemma 2.2 shows G is o-equivalent to the
cardinal sum A B 4. We show in Lemma 2.3, if A is a lexicographic
extension of an l-ideal B (notation: A = {B>) then for each ac 4",
Q,=A or Q, is a principal dual ideal. Theorem 2 shows that if G
is an l-extension of A = (B) then G contains an l-ideal H= A @ J,
JE 4 and G is an l-extension of H by the ordered group (o-group)
4/J. In addition if 4 is an o-group then G = {4 & J).

Theorem 3 gives a method of constructing l-extensions from an
abelian extension G = (4, 4, f) that depends only on the cardinal
summands of A.

In §4 we use the above to investigate those l-extensions of an
l-group A with a finite basis. We show that to an o-equivalence every
l-extension of such an l-group A by an l-group 4 is determined by
a meet-preserving homomorphism of the semigroup 4* to the semigroup
of all cardinal summands of A such that f(«, B) € H,.,.

2. Extensions of l-groups. A subset @ of A is a dual ideal if
ac@® and b = a implies be@.

LemmA 2.1, If A is an l-group and Q S A 1s a dual ideal that
satisfies

*) QN b+ A" has a smallest element for all be A,
then @ is o sublattice of A. Thus Q is a lattice dual ideal.

Proof. Let a,beQ, then a \V be@Q since @ is a dual ideal. Also,
a,be@n[(@ A Db) + A*]so by (*) there is an element x € QN [(a@ A b) + A*]
such that * = a and « <b. Hence, t <a AbsoaAbeQ and Q is
a sublattice of A as desired. :

If E is a subset of A then the dual ideal generated by E (notation:
DI(E)) is {xcA|x = y for some ye E}. If a dual ideal is generated
by a single element we say the dual ideal is principal.

THEOREM 1. Suppose A and 4 are l-groups and G = (4, 4, f, Q)
18 @ p.o.-extension of Aby 4. Then G is an l-extension if and only if
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(1) of a ANB=20 then Q,N|[Qs+ b+ fla — B, B)] has a smallest
element for all be A,

and

(2) Qo + Qp + f(@, B) = Qasp for a, Bed".

Proof. Let G be an l-extension. Suppose bec A and a, Be 4" are
such that a AB=6. Let vy=a — 8. For aecd, the mapping of
(¢, @) — « is an l-homomorphism so (b, 7) V (0, 6) = (d, &) where d € A.
Now (d, @) = (0, 6) implies de @, and (d,a) = (b,v) implies (0,0) =
d, ) —(b,7)=1d —b— f(v,B),B8] so d—0b— f(v,8)eQ Hence,
deQuN[Q + b+ fla—B,8)] IfceQsn|[Q + b+ fla—pB,») then
a similar argument shows (¢, a) = (b,7) and (¢, a) = (0,0). Hence,
(c,&) =(d,®) and ¢ = d. Therefore, d is the smallest element in
Q. N[Qs + b + fla — B, B)] and (1) holds.

To show (2) let a, Be d*. If either @« =8 or 8 =6 then (2) is
trivial, so suppose « > 6 and B8 > 6. Since G is a p.o.-extension we
have Q, + Qs + f(a, B) & Quis. For the reverse containment, let
CE€Quip YE€WQw b =2 —y — fla,8) and (a,B) = (b, 5) V (0,0). Now
(¢, + B) = (0, 0) if and only if ¢ € Q,.p; (¢, ® + B) = (b, B) if and only
if ce @, + b + f(a, B). On the other hand, since (a, 8) = (b, B) V (0, 9),
€€ QuipN[Qs + b+ fla, B)] if and only if ceQ, + a + f(«, B). Hence
Quis N [Qs + b + fla, B)] = Qs + @ + f(, B) and by (1) a is the smallest
element in Qg N (Qy + b). Therefore,

[Qw + b + f(a/; B)] ﬂ Qw—HB
= Qs + f(a, B) + [Qs N (Qo + )] S Qn + flat, B) + Qs -

By the choice of b, v €[Q, + b + f(a, B)] N Quip and Q, + Qs + f(a, B) =
QerB-

For the sufficiency assume (1) and (2) hold and suppose (b, 8)eG
and that (b, 8) is not comparable with (0, 8). Let ¢ be the smallest
element in Qg N [R-@r,+ b+ f(B, —(BAI)]. Then (¢, 8V 0)=(0,0)
and (b,8). If (a,a)=(b,B),(0,0) then a € Qy N [Qu—s+ b+ fla—B, L.
Condition (1) implies (*) s0 Qu—ve, i @ sublattice of A and from (2)
we can derive the equality,

Qw n [Qw——;—} + b —I—-f(O( - B, B)] = [Qw~(ﬁ\/9) +f(a - (B V 0)9 18 V 0)]
+ {Qsv N [Q-grey + b + f(B, —(B N ]}

Since ¢ was chosen as the smallest element we have a € Q- pve +
fla— BV 0,8V H)+c and therefore (a,a)=(c, 8V 0). Hence,
e, BV O =(®B)V (0,0 and G is an l-extension of A by 4. It can
be shown that conditions (1) and (2) are equivalent to those given by
L. Fuchs [5]. The entire proof was given so that this paper will be
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more self-contained.

An l-group G is a cardinal sum of l-ideals A,, 4,, --+, A, (notation:
G=A,H---AA,)Iif Gis the direct sum (notation: G=A4, P A,D---DA4,)
of the 4; and if for a;c4;,a;, + +-+ +a,=0 if and only if a,=0
fori=1, -+-,n. It can be shown that a direct sum of l-ideals of an
I-group is actually the cardinal sum. G is a lexico-extension of an
l-group A (notation: G = {A4)) if A is an l-ideal of G, G/A is an o-group,
and every positive element in G but not in A exceeds every element
in A. In this case we note that if « + A <b+ A in G/A then each
element of b + A exceeds every element of a + A.

LeMMA 2.2. Suppose G is an l-extension of A by A.

(@) If Qu= A for all 0 = acd™ then G = (4.

(b) If Q, is a principal dual ideal for each ac A" then G 1is
o-equivalent to the cardinal sum, A ® 4, of A and 4.

Proof. Let G be an l-extension of 4 by 4.

(a) If Q,= A for all § = e 4*, then every positive element of
G\A exceeds every element of A. From (1) it follows that 4 is an
o-group and therefore G = {4).

() If Q, is a principal dual ideal for each a e 4, let x, be the
generator of Q.. By (2) we have x, + %z + f(@, B) = 415. Let H=
AH 4, then H= (A, 4, =0,Q = A*) is an l-extension of A by 4.
Define t': 4t — A as t'(a) = x,. Then ¢’ induces a function ¢: 4— A
and it follows that for a, Be 4

0= rf"a, B) = fla, B) — Ha + B) + Ha) + HUB)
and
At =Q, = —tla) + Q, for acdt.,

Hence G and H are o-equivalent l-extensions.

LemMMA 23. Let A=<B>,A+B and G=(A,4,f,Q) be an
l-extension. Then for a e 4t either Q, = A or @, is a principal dual
ideal.

Proof. If A is an o-group, @€ 4+ and Q, # A then thereisbec A
such that b < a for all ¢ €Q,. Hence, (b, @) \ (0, ) = (¢, &) implies ¢
is the smallest element in Q, and therefore Q, is a principal dual ideal.

If A is not an o-group then BC A and A/B is an o-group. Suppose
ac 4t and @, # A, then there is 0 > be A\B such that b+ B+ % + B
for all z€Q,. For suppose for each 0 > bec A\B there is an 2€Q,
such that b + B=« + B, then b + heQ, for some heB. Now for
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any ¢€ A there is 0 > ae A\B such that a + B<¢+ Bsoc>a+h
which implies c€ Q,. Thus @, = A, a contradiction.

Now Q, N (b + Q) must have a smallest element so it suffices to
show Q,S b+ @,. To this end let x¢Q,. If © + B=<b -4 B then
either x + B < b + B which impliesx < band beQ,or x + B =10 + B.
Both cases lead to contradictions so  + B > b + B which implies > b

and xeb 4 @,. The proof is complete.

COROLLARY 2.1. If A =<B)> then (1) may be replaced by

1Y If a,Bed* and a N\ B = 0 then either Q, and Qg are principal
dual ideals or Q, is principal and Qs = A.

Proof. If G is an l-extension and «, B€ 4" such that a A 8 =0
then (1) implies Q, N @ must have a smallest element and (1’) follows
from Lemma 2.3. Conversely, if x is the smallest element in Q,, ¥ the
smallest in Qs and be A then z VV (y + b + fla — B, B) is the smallest
in @ N[Qe+ b+ fla—pB,0)). If Qo= A then x is the smallest and
if Qu=A4,y+ b+ fla — B, B) is the smallest.

From the above it follows that if A =<{B)> and 4 is an o-group
then (1) may be replaced by

") For each a4, Q, = A or Q, is a principal dual ideal.

From (2) of Theorem 1 we have: The only l-extensions of 4 = <{B)>
by an Archimedean o-group 4 are o-isomorphic to the cardinal extension
or the lexico-extension.

THEOREM 2. Let A =<B)> and 4 be l-groups and G = (4, 4, f, Q)
be an l-extension. Then G contains an l-ideal H which is o-isomorphic
to AmJ,JE 4, and G is an l-extension of H by the o-group 4/J.

Proof. By Lemma 2.3 either @, = A or §, is principal for all
acdt. LetJt={aed"|Q, + A}. Then by (2) of Theorem 1, J* is
a convex subsemigroup of 47. Let J be the l-ideal of 4 generated
by J*andlet H=(4, J, f’, Q) where f'=f|(Jx J)and Q, = Q,, e J+.
Then H is an l-ideal of G and Q) is a principal dual ideal for all e J*.
Therefore by Lemma 2.2, we have H o-isomorphic to A @ J.

By way of contradiction, if 4/J is not an o-group then there are
X, Ye(d/J) such that X A Y=J. Let X=a+ J, Y =28+ J then
XANY=@+I)DANB+IN=@AB+J=JsoaNBed. Nowa =
(@NB)+7,8=(@ANB)+ 6 wherey Ad =20 and v,0¢J, hence @, =
A = Q;. This contradicts Corollary 2.1. Thus 4/J is an o-group.

Finally, the natural mappings induce an o-isomorphism of G/H onto
4/J. Hence, G is an l-extension of H by the o-group 4/J.
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We note that if aed4™NJ* then @, =A so if 0<geG\H then
g > a for all ac A.

COROLLARY 2.2. If 4 is an o-group and G = (A, 4, f, Q) is an
l-extension then G = (A B J).

Proof. If 4 is an o-group then 4 =<J)>. The corollary follows
from the results of Conrad [3, p 235] since 4 B J contains all the
nonunits of G.

We note that if G is an l-group with two disjoint elements but
not three then G is an l-extension of an o-group by an o-group and
hence we have the structure theorem of Conrad and Clifford [4] for
the abelian case.

3. l-extensions with each @, generated by a coset of an Il-ideal.
Throughout this section we will consider those Il-extensions G =
(4, 4, f, Q) where, for each a € 4%, Q, = DI(z, 4 H,), H, an l-ideal of A.

LEmMMA 3.1. Suppose G = (A4, 4, f, Q) is an l-extension of the
above type. Then there is an l-extension G' = (4, 4, f’, Q') o-equivalent
to G with Q, = DI(H,) for each a e 4*.

Proof. If G is an l-extension and @, = DIz, + H,) for each
a e 4%, then there is a mapping t: 47— A defined as t'(a) = z,. Since
each a € 4 has a unique representation & = @t — a~ where a* = a Vv 6,
a = —(a A 0), we can extend ¢’ to a mapping t: 4— A by defining
Ha) = t'(at) — t'(a).

Let f'(a, B) = fla, B) — ta + B) + Ha) + UB) and @, = —t(@) + Q.
It is easily verified that ' and Q' satisfy conditions (i)-(vi) so G’ =
(4, 4,f, Q) is a p.o. extension of A by 4. From Theorem 1 it follows
that G’ is an l-extension. Clearly, G’ is o-equivalent to G and Q' =
DI(H,).

For those l-extensions G of A by 4 with @, as above the question
of o-equivalence leads to an investigation of the l-ideals of 4. To
show this we need the following.

LEMMA 3.2, If A is an l-group, H and K l-ideals of A and
DIy + H) = DIz + K) then y + H=2 + K and H= K.

Proof. Suppose DIy + H) = DI(z + K) where H and K are l-ideals
of A, If x =2~y then DI(H) = DI(x + K). Since H S DI(x + K),
0cDix+ K). 1If 0¢x+ K then 0> 2+ k, ke K so x + K contains
a negative element. Since DI(H) is a semigroup, 2(x + k) € DI(x + K)
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so2r +2k=x+1,1e K. Hence, x + (2k — 1) =2 0. This is a contra-
diction since x + K can contain no positive elements. ThusOex + K
and x € K. Moreover, we have DI(H) = DI(K) which implies H = K.
For if H # K then, without loss of generality, there is 0 > he H\K.
But he DIIK)so h > ke K. Hence, 0 > h > k, and by convexity s € K,
a contradiction. Thus, H=¢+ K=2—y + Kand ¥y +- H=z2 + K.

Nowif G = (4, 4, f,Q) and G’ = (4, 4, f', @) are two l-extensions
with @, and Q. generated by l-ideals H, and H, of A, then G and G’
are o-equivalent if and only if there is a funection ¢: 4— A such that

fl(a, B) = fla, B) — ta + B) + Ha) + ¢B)
H,= H, and t(a)ec H, .

The question at this point is which l-extensions will have @, generated
by a coset of an l-ideal. We give a partial answer to this question
in the next section.

We complete this section by giving a method for the construction

of l-extensions of l-groups.

THEOREM 3. Suppose A and 4 are l-groups and G = (A, 4, f) is
an abelian extension of A by 4. For each o€ 4%, let H, be a cardinal
summand of A such that

1*) if a ANB=20 then H,N Hy, =0

(2*) HM + HB = Hw+f3 and f(ar /8) € Hw+3'

If Q, = DI(H,) then G = (4, 4, f, Q) s an l-extension of A by 4.

Proof. Clearly (iv) is satisfied and for any ae4*, (2*) implies
H, & H,. From (1*) it follows that H, = 0. Thus @, = A* and (vi) is
satisfied. Moreover, from (2*) we have DI(H, + H; -+ f(«, B)) = DI(H,,)
so DI(H,) + DI(Hp) + f(a, B) = DI(H,.s) and (2) of Theorem 1 holds.

If a N8B =26 then H,N Hy =0 so Hy,ps = H, P H, and since H,
and H; are l-ideals we have H,,; = H, B Hy. Since H,,; is a cardinal
summand we conclude A = H,,, BD = H,H3 H,H D where D is an
l-ideal of A. Suppose be A and b + fla — B, B) = (a,, a,, a;) where
a, € H, a,¢c H, and a,¢D. We show (a,0,a;,V 0) is the smallest
element in

QN b+ fla —B,8) + Q) = DI(H,) N DI + fla — B, B) + Hp) .

Now (a4, 0, a,\V0)=(a,, 0, 0) so (a,,0, a;\V0) € DI(H,). Also (a,, 0, a,) =
(a’b 09 as) = (alr V2% a’3) - (0! 129 O) S0 (a'ly 0’ a/3) € b +f(a - By B) + HB and
(a’h 0’ a3v0)eDI(b+fa—,8, 18) +HB)° If

(u, v, w) € DI(H,) N DI(b + fla — B, B) + Hp)

then u =z h,eH,,v=0 and w=0. Also w=a,,v=a,+ h; where
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hge Hg and w = a,. Hence, (4, v,w) = (a,, 0, a; V 0) and (a,, 0, a;, \V Oy
is the smallest element in Q, N (b + fla — B, B) + Q). Thus G is an
l-extension of A by 4.

We note that, since any two representations of an l-group as a
cardinal sum have a common refinement, the cardinal summands of an
l-group form an additive semigroup closed with respect to intersection.
That is,if H=AMB A" and H=BH B then A=ANB B ANDHB),
A=AnBBANB)and B=ANBEA NB). Thus H= A H
A =(A+ BB (A NB). Hence, A+ Bisa cardinal summand of G.

4, Extensions of l-groups with a finite basis. An element ¢ of
an l-group G is basic if 0 < g and {xcG|0 < 2 = g} is ordered. A
subset S of GG is a basis for G if S is a maximum set of disjoint
elements and each g € S is basic. Conrad [2] has shown that an I-group
A with a finite basis of n elements is a lexico-sum of % ordered subgroups.
In particular, A is the cardinal sum of two l-groups each with a basis
of fewer than n elements, or A is a lexico-extension of such an l-group.
In this section we are concerned with l-extensions of l-groups with
finite bases.

LemMA 4.1. Suppose A has a finite basis and G = (4, 4, f, Q) is
an l-extenston of A. Then for ac 4t,Q, = DIz, + H,) where H, is
an l-ideal of A.

Proof. Let A have a basis of # elements. The proof is by induction
on 7.

It follows from Lemma 2.3 that we need only consider A= B8 C
and if n =1 then H, = A or H, = 0.

So suppose the theorem is true for all l-groups with a basis of
fewer than n elements. Let ¢: A— B and v: A — C be the projections.
Now B has a basis of fewer than n elements and G’ = (B, 4, f, #Q)
is an l-extension of B so by induction @@, = DIz + M) where x e B
and M is an l-ideal of B. Similarly, +Q, = DI(y + N) where yeC
and N iIs an l-ideal of C. Since Q, is a sublattice of A, a straight
forward argument shows Q, = DI{((x + %) + (M + N)) and M + N is.
an I-ideal of A. The proof is complete.

The following theorem shows that for an l-group A with a finite
basis every l-extension G of A by an l-group 4 is o-equivalent to an
l-extension constructed by the method described in Theorem 3. That
is, to an o-equivalence, every such l-extension is determined by a
meet-preserving homomorphism from the semigroup 4™ to the semi-
group of all cardinal summands of 4 such that fla, 8) € H, .

In what follows we may, by Lemmas 3.1 and 4.1, assume for each
ae 4% that Q, = DI(H,).
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THEOREM 4. If A has a finite basis and G = (A, 4, f, Q) is an
l-extension of A by an l-group 4 then, for «, Be 4+

(a) ifa ANB=20 then H,N Hy, =0

(b) H, + Hy = Hy.p and f(@, B) € Hasg

(¢) H, ts a cardinal summand of A.

Proof. Let A have a finite basis of n elements and G be an
l-extension. By (1) if & A 8 =0 then Q,N Qs must have a smallest
element w. Since 0€Q, N Qs w =0 and therefore we H, N H,. If
H, N Hy # 0 then there is h € H, | Hg such that » < w and he€Q, N Qp,
a contradiction. Thus (a) holds.

From (2) we have

DI(H,) + DI(Hp) + f(«, B) = DI(Hy.)
S0
DI(Hw + H;g + f(a, B)) = DI(Hw+B) .

Thus by Lemma 2.3, H, + Hy = H,., and f(«, 8) € H,;s and (b) holds.

Now if A = B) then for each awc 4%, H, =0 or H, = A and (c)
follows in a trivial way. So suppose A = B @ C and (¢) is true for
all I-groups with a basis of fewer then n elements. If : A— B and
Yy: A— C are the projections then G = (B, 4, ¢f, Q) and G’ =
(C, 4, ¥f, +Q) are l-extensions where @@, = DI(pH,) and @, =
DI(vH,). Hence, by induction, ®H, is a cardinal summand of B and
+H, is a cardinal summand of C and we have A=B R C=9H, H
MByvH 8B N=9oH, BvH, BMEN=H, B MB N where M is an
l-ideal of B and N is an l-ideal of C.

Using the results of Conrad [3, p. 223] we conclude that the minimal
cardinal summands of an l-group A with a finite basis are those l-ideals
of A that are lexico-extensions and are not bounded in A.

Added in Proof. The results of this paper have been extended
by the author to include central extensions G of an abelian I-group
A by an arbitrary l-group 4. For central extensions, Theorem 1 (1)
reads: if a AB=0 then Q,N[Qs + b+ f(B, & —B)] has a smallest
element for all be A. In Theorem 2, G/H is still o-isomorphic to the
o-group 4/J but G need not be a central extension of H by 4/J. The
remaining results are unchanged for central extensions.
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