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We mention the Erdos-Turan theorem [2] that if F(f) is a real
continuous function with period 2z, and if ¢,(0) is the unique trigo-
nometric polynomial of order » that coincides with F'(#) in 2n + 1
points equally spaced over an interval of length 2z, then ¢,(0) converges
to F(6) on that interval in the mean of second order. It is the purpose
of the present note to prove the analogue in the complex domain, and
to discuss some related remarks.

THEOREM 1. Let the fumnction f(z) be analytic in D:|z| <1,
continuous tn D+ C(C:|z|=1), and let p.(2) be the polynomial of
degree n coinciding with f(z) in the (n + 1) st roots of unity. Then
the sequence p,(z) converges to f(z) on C in the mean of second order.
Consequently we have

(1) lmp@=f@) wniformly in [z] S7(<1),
If we set

(2) L=\ |76 = p@)P1dz],

we have

Pu?) = 31 f@) A,

Az) = wHz" — 1) @ = @il (n+1)
n+1)iz—o)’ ’

and shall show

(3) lim 7, =0 .

n—r=00

We introduce the notation
f2) — t,() = 4(2), E,=max|[|4z],z on C],

where t,(z) is the polynomial of degree » of best Tchebycheff approximation
to f(z) on C, and denote by P,(z) the polynomial of degree = that
coincides with 4(z) in the (n + 1) st roots of unity. Then we have
P,(z) = p,(2) — t,(2), whence
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1= )46 — P@) ¢ ldz]
< 2S | 42| dz | +2S | P2) [P |de| = I, + 1"
(4 o
There follow the relations I, < 4nE?2,

1y =2 |5 s 4]

<2 2 S @ X) ||| Ao | dz|

<285 5| | A )] .

However, we have

k
A =_@ no kel .. k
K(2) n+1(Z+ 24 e ™)
_ ki
S A2)Az) | dz]| = ﬂ (1 + @7 4 @9 4 oev  @rih=a))
¢ (n + 1)

= 27[51%/(% + 1) ’

where 9§, is the Kronecker d. It is well known {4, Theorem 5, p. 36]
that E, — 0 as % — o, so (3) holds.
Equation (1) follows from (3) by the Cauchy integral formula

(4) 1@ - p@r == | LOZ2OP ) g,

271, t—z

With the hypothesis of Theorem 1, the conclusion (1) is due to
Fejér (1918). Theorem 1 is related to various other results concerning
convergence of polynomials interpolating in roots of unity; for instance
(Runge) if f(z) in Theorem 1 is analytic in |2| = 1, equation (1) holds
uniformly in |z| < 1. Further references to the subject are given by
Curtiss [1].

There exist numerous other results, somewhat similar to Theorem
1, where now a sequence of polynomials P,(z, 1/z) of respective degrees
n in z and 1/z converges on C in the second-order mean to a given
function f(z) defined merely on C. The function f(2) can be expressed
on C as f(2) = fi(z) + f«z), where fi(2) is of the Hardy-Littlewood class
H, and f.(2) of the analogous class G, for the region |z| > 1 (we suppose
fi0) = 0; compare e.g. [4, §6. 11]). Any function of class H, is
orthogonal on C to any function of class G,, so if we set P,(z, 1/2) =
2.(2) + q.(1/2), where p,(z) and ¢,(1/2) are polynomials of respective
degrees 7 in their arguments, ¢,(0) = 0, we have

(5) limp,(2) = ——1——S fydr _ filz) = LS M, z interior to C,

P ort ot —z omi o t — 2
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(6) lim g,(1/2) = LS SO _ £y = _1_5 fatdt

nvco omi Jo t — 2 T ot Jot —2

z exterior to C,

with uniformity of approach for z on an arbitrary compact set in the
respective regions. This remark concerning (5) and (6) applies for
instance in the case of the Erdos-Turin theorem, where we set F'(9) =
f(e®) and t,(0) = p.(e®, e*%) on C.

A second remark concerning (5) and (6) is as follows. By the
orthogonality relations we have for the second-order norms on C

W= PP = llfi — 2l + s — @all” .

Consequently the rapidity of convergence in the mean on C of p, to
Jfi: and of g, to f, is not less than that of P, to f. If the positive
numbers ¢, ¢,, --- are given and approach zero, there is a corresponding
class K of functions f(z) belonging to L, on C such that for each f(z)
there exist polynomials P,(z, 1/z) with

(7) 1£@) — Pyz, 1/2) || = O(e,) ;

here the P,(z, 1/2) may be taken as the partial sums of the Fourier
or Laurent development of f(z) on C. It follows that every function
f(®) in K can be written f(z) = fi(2) + fi(?), with f, and f, in H, and
@, respectively, where the partial sums p,(2) of the Taylor development
of fi(z) satisfy

(8) I1f1(®) — pu(2) || = OCe,)
and the partial sums ¢,(1/2) of the Laurent development of f,(z) satisfy
(9) I1f:(z) — ¢.(1/2) || = OCe,) .

Thus f, and f, belong to K on C.

As a particular case of this application, we mention the class of
functions L{(2, k, a), 0 < a < 1, namely the class of functions whose
kth derivatives on C satisfy there a square-integrated Lipschitz condition
of order «; this class was first studied by Hardy and Littlewood,
theorems proved in detail by Quade [3]. An alternative definition of
the class is (7) with ¢, = 1/n***, It follows that every function f(z)
of eclass L(2,k, a),0 < a <1, can be expressed on C as fi(z) + fi(?),
where the latter two functions, of respective classes H, and G, satisfy
(8) and (9) with the same values of ¢,; thus fi(2) and fy(?) likewise
belong to L(2,k, &) on C. The case & =1 can be similarly treated,
where the integrated Lipschitz conditions are replaced by the condition

(10) S:| F(O +h)+ FO —h) — 2F6) ! d6 = O,
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and F'(0) = f*(z) is continuous on C; this class was introduced by
Zygmund, and is characterized by (7) with ¢, = 1/n*f*'. We have as
before f(z) = fi(z) + f(z) if f(2) is given, and the corresponding classes
of fi(2) and f,(z) are characterized by (8) and (9) with the same values
of ¢,, and by (10). These classes of analytic functions are studied in [5].

Added inm proof. A second proof of Theorem 1, due to G. H.
Curtiss, will appear shortly.
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