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ON SOME FINITE GROUPS AND THEIR COHOMOLOGY

KUNG-WEI YANG

The purposes of this paper are: (I) to characterize the finite
groups whose 2-Sylow subgroups are not isomorphic to a generalized
quaternion group and which have periodic cohomology of period 4,
(II) to show that all possible cohomologies of such a group G can be
realized by direct sums of (?-modules which belong to a specific finite
family of G-modules.

The author wishes to express his deep gratitude to Professor G.
Whaples and Dr. K. Grant for many helpful suggestions and continual
encouragement.

The reader is referred to [1, Ch. XII] for basic notions, definitions
and notations concerning cohomology of finite groups. The only
departure from [1, Ch. XII] is the following: we shall say that a
finite group G has periodic cohomology of period k if k is the least
positive integer such that Hk(G, Z) contains a maximal generator [1,
pp. 260-261]. And to avoid typographical difficulties we will denote
by Z{1) the cyclic group of order I.

PROPOSITION I. Let G be a finite group whose 2-Sylow subgroups
are not isomorphic to a generalized quaternion group. Then G has
periodic cohomology of period 4 if and only if G has a presentation

G = {σ, τ: σs — 1, τ* = 1, τστ"1 = a'1}, with the conditions

(i) 8 is an odd integer >1,
(ii) t is a positive even integer prime to s.

Proof. Let G be a finite group whose 2-Sylow subgroups are not
isomorphic to a generalized quaternion group and which has periodic
cohomology of period 4. It is well-known [1, Theorem 11.6, p. 262]
that if a finite group has periodic cohomology (of finite period) every
Sylow subgroup of the group is either cyclic or is a generalized
quaternion group. Since we assume that the 2-Sylow subgroups of G
are not isomorphic to a generalized quaternion group, every Sylow
subgroup of G is cyclic. It is also well-known [6, Theorem 11, p. 175]
that a finite group G containing only cyclic Sylow subgroups is meta-
cyclic and has a presentation

G = {σ, τ: σs = 1, τ* = 1, τστ"1 = σr}, with the conditions
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(1) 0 < s, (st — the order of the group G),
(2) ( ( r - l ) ί , β ) = l
( 3 ) r* Ξ l(mod s), and conversely.
We observe that if s = 1 or ί = 1 or r = 1 the finite group G is cyclic
and G has periodic cohomology of period 2 (or 0). These cases are
therefore excluded. On the other hand, once these exceptional cases
are excluded G is no more a cyclic group and it will have periodic
cohomology of period Ξ>4.

Notice that (1), (2) and (3) imply (i)
Let H be the subgroup of G generated by the element σ. H is

clearly a cyclic normal subgroup of order s. And G/H is cyclic of
order t. By condition (2), s and t are relatively prime to each other.
We can therefore apply the decomposition theorem of Hochschild-Serre
[2, Theorem 1, p. 127] and obtain

( 4 ) Hk(G, K) = Hk(G/H, KH) 0 (Hk(H, KψH ,

for all k > 0 and for all G-module K. (For k > 0, Hk(G9 K) = Hk(G, K)).
In particular, we have

Hk{G, Z) = Hk(G/H, Z) © (Hk(H, Zψ* ,

for & > 0. The G/iJ-operators on ίϊk(H, K) are explicitly described
in [2, p. 117]. In particular, G/iί-operators on ίϊk(H, Z) are induced
by the automorphisms of H which are themselves induced, on H, by
inner automorphisms of G. In the present situation, all such auto-
morphisms of H are generated by the automorphism f(p) — p^—τpτ'1),
where peH. The automorphism f: H—> H induces an automorphism
/ * of Hk(H9 Z) [4, Lemma 3, p.^ 343] such that if g2k e H2k(H, Z),
then f*(g2k) — rkg2k. Therefore H\G, Z) has a maximal generator,
i.e. G has periodic cohomology of period ^ 4 if and only if f*(g) — g
for all g β H\H, Z). This is equivalent to
( 5 ) r2 = l(mod s) .

(We recall that r = 1 we excluded). An elementary,number theoretic
calculation shows that the only solution for r in (2) and (5) is r =
— l(mods). Therefore the number t in (3) is an even positive integer
(if it is negative, we can present G by letting τ' = r"1). This shows
that the finite group G has a presentation as mentioned above.

The converse of the proposition is obvious.
We know that if I is the order of the group G then for any G-

module K all the cohomology groups ίϊk(G9 K) (—oo < k < oo) are of
exponent I—that is, for all g e Hk(G, K), Ig — 0. Let

β = P?1 PίS Pi = {Pi, ••-,?*} and t = g? •••#:% P2 = {qlf ••-,?,}

be decompositions of s and £ into products of prime powers (where
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qx = 2 and vλ ^ 1). It is obvious from (4) that a group with periodic
cohomology of period 4 has P2-period [1, Exercise 11, p. 265] equal to
2. Conversely, we have

PROPOSITION II. Let G be a group having a presentation

G = {σ, τ: σs = 1, τ* = 1, TOT"1 = 0-1} ίi i t t ίfee conditions

(i) s is an odd integer > 1 .
(ii) t is a positive even integer prime to s.

Lei Plf P2 be as defined above. Then there exists a finite family of
G-modules ^ such that given any sequence of abelian groups
Ak( — cx> < k < oo) satisfying

(a) each Ak is of exponent st,
(b) the sequence is periodic of period 4,
(c) the P2-period of the sequence is equal to 2, then there exists

a G-module M which is a direct sum of G-modules of J?" such that
Hk(G, M) = AΛ-oo <k<oo).

First we observe the following

LEMMA. Let G be a finite group and let K be a G-module. Let
S be a set of primes in the ring of integers Z and let Q(S) be the
quotient ring [ 5, p. 46] of Z with respect to the multiplicative system
generated by S. (As usual when Q(S) is considered as a G-module
it is to be understood that G operates trivially on (the additive group
of) Q(S)). Then

Hk(G, K® Q(S)) = Hk(G, K) ® Q(S)(-co < k < oo) ,

where ® = ® z

The proof is immediate.

Proof of Proposition II. Let s, £, Px, P2 be as before. Let

s(i9 μ) = s/ί>f(i — 1, , h, 0 ^ μ ^ ̂ i),

Let JSTXi, /x) = Σ i 4 μ ) ^yi>/A) (direct sum on the symbols xf μ))

t(i v)

K\if v) = 2 ZVJ%>V) (direct sum on the symbols 2/jΐϊV)) .

Define G-operators on K\i, μ) and K\i, v) by

(subscripts are modulo s(i, μ))
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σy{/^ = y{/'v)

{iv (subscripts are modulo t(i, v)) .

Let

M\i, μ) = K\i, μ) (g) Q((PX - {j>4}) U P2),

M\i, v) = K\i, v) ® Q(PX U (P% - {?,})) .

By (4), the above lemma and the fact that (H*k+2(H, K\i, μ))QIH = (0),
one shows

H*k(G, M\i, μ)) - Z{Pt) Hik(G, M\i, v)) =

H^\G, M\i, μ)) = (0) H*k+1(G, M\i, v)) = (0)

^ 4 f c + 2 ( G , MXί, μ)) - (0) H 4 f c + 2(G, M 2 (i, v)) - Z(gv)

H'k+\Gf M\i, μ)) = (0) H*k+\G, M\i, v)) = (0)

The calculation is purely mechanical.

Now, let 0 -> !-> Z[G] -^Z^+O, where ε(Σ, e , ^ ) = Σo ê  ίo , / =
Ker (ε), and let j^~ consist of

Γ ® Af^i, ̂ )(fc = 0,1, 2, 3, i = 1, , h, 0 ̂  ^ ^ %)

/* (g) ikΓ2(i, v)(fc - 0,1, i = 1, , β, 0 ̂  v ̂  v4) ,

where P = I ® <g) /(& times), 1° = ^.

Suppose we are given a sequence of abelian groups Ak(—co <k<co)
satisfying conditions (a), (b), (c). Since by (a) each Ak is of exponent
st, it follows from [3, Theorem 6, p. 17] that Ak is a direct sum of
cyclic groups. Let nA denote the direct sum of n copies of A, where
A is either an abelian group or a G-module and n is a cardinal number.
Then we can write

Σ n{k,i,v)Z{q\),

where m(fc, i, μ) = m(fc + 4, i, /i)(i = 1, , h, 0 ̂  /i ̂  %<), (̂fc, i, v) =
(̂fc + 2, i, v)(i = 1, , β, 0 ̂  v ̂  v<) and m(k, i, μ), n(k, i, v) are cardi-

nal numbers. Take

, i, μ)P (g) Λf*(i, ̂ )

ΘΣΣ Σ

Observe that ίϊk-ι(G, K) = Hk(G, P ® K). Clearly #*((?, M) - Ak

(-co < jfc < co).

REMARK. In a similar but much simpler fashion one can show
that all possible cohomology of a cyclic group G can also be realized
by direct sums of G-modules of a certain finite family of G-modules
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Addendum, to the paper

"On Some Finite Groups And Their Cohornology"

(Received October 11, 1963)

Let group G have a presentation

( * ) G = {σ, τ: σs = 1, τ* = 1, τστ~ι = σr) ,

with the conditions
( i ) 0 < s

(ii) ( ( r - l ) t , 8 ) = l
(iii) r* = l(mod s)
(iv) there exists a positive integer n such that n is the order to

which r belongs to moduli p{ (i = 1, « ,ft) (i.e. w is the smallest
positive integer such that rn = l(mod p^), where s — pΊι pΊh. Let
β, t, Plf P2, be as defined before (here qx is not necessarily = 2). It is
clear from condition (iv) that G has Pi-period equal to 2n and P2-period
equal to 2.

PROPOSITION III. Let G be a group having a presentation (*)
with the conditions (i), (ii), {iii), {iv). Then there exists a finite
family of G-modules ̂ ~ such that given any sequence of abelian
groups Ak(— co < k < co) satisfying the following conditions:

(a) each Ak is of exponent st
(b) the PΎ-period (in the obvious sense) of the sequence is 2n
(c) the P2-period of the sequence is 2,

there exists a G-module M, which is a direct sum of G-modules of
^ such that Hk(G, M) = Ak(-oo < k < co).

Proof. Let s(i, μ), t(i, v), K\if μ), K\i, v), be as defined in Propo-
sition II, Define G-operators on K\i, μ) and K\i, v) by

' ^ ^ \ (subscripts are modulo s(ί, μ))

(subscripts are modulo ί(i, v)) .

By condition (iv) we have

H**k+i(H, K\i, μ)flH - (0)(i = 1, 2, , 2n - 1) .

The rest of the proof is parallel to that of Proposition II. ^ con-
sists of G-modules

P 0 ikP(i, μ)(fc = 0, 1, , 2n - 1; i = 1, , ft; ̂  = 0, 1, , u{)

P 0 ikΓ2(i, v)(fc - 0, 1; i = 1, 2, , e; v = 0, 1, , ̂ ) .
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