Pacific Journal of Mathematics

ON THE RING-LOGIC CHARACTER OF CERTAIN RINGS

ADIL MOHAMED YAQUB

Vol. 14, No. 2 June 1964

ON THE RING-LOGIC CHARACTER OF CERTAIN RINGS

ADIL YAQUB

Introduction. Boolean rings $(B, \times, +)$ and Boolean logics (= Boolean algebras) $(B, \cap, *)$ though historically and conceptionally different, are equationally interdefinable in a familiar way [6]. With this equational interdefinability as motivation, Foster introduced and studied the theory of ring-logics. In this theory, a ring (or an algebra) R is studied modulo K, where K is an arbitrary transformation group in R. The Boolean theory results from the special choice, for K, of the "Boolean group," generated by $x^* = 1 - x$ (order 2, $x^{**} = x$). More generally, let $(R, \times, +)$ be a commutative ring with identity 1, and let $K = \{\rho_1, \rho_2, \dots\}$ be a transformation group in R. The K-logic (or K-logical algebra) of the ring $(R, \times, +)$ is the (operationally closed) system $(R, \times, \rho_1, \rho_2, \cdots)$ whose class R is identical with the class of ring elements, and whose operations are the ring product "x" of the ring together with the unary operations ρ_1, ρ_2, \cdots of K. The ring $(R, \times, +)$ is called a ring-logic, mod K if (1) the "+" of the ring is equationally definable in terms of its K-logic $(R, \times; \rho_1, \rho_2, \cdots)$, and (2) the "+" of the ring is flixed by its K-logic. Of particular interest in the theory of ring-logics is the normal group D which was shown in [1] to be particularly adaptable to p^k -rings. Our present object is to extend further the class of ring-logics, modulo the normal group D itself. A by-product of this extension is the following result, namely, any finite commutative ring with zero radical is a ring-logic, mod D (see Corollary 8). Furthermore, in Corollary 10, we prove that, more generally, any (not necessarily finite) ring with unit which satisfies $x^n = x(n \text{ fixed}, \ge 2)$ is a ring-logic (mod D). Finally, we compare the normal group with the so-called natural group in regard to the ring-logic character of a certain important class of rings (see section 3).

1. The finite field case. Let $(F_{p^k}, \times, +)$ be a Galois (finite) field with exactly p^k elements (p prime). Then, as is well known, F_{p^k} contains a multiplicative generator, ξ ;

$$F_{\it pk} = \{0, \xi, \xi^{\it 2}, \, \cdots, \, \xi^{\it pk-1} \, (=1) \}$$
 .

We now have the following (compare with [1]).

THEOREM 1. Let F_{p^k} be a Galois field, and let ξ be a generator of F_{p^k} . Then the mapping $x \to x$ defined by

Received August 16, 1963.

$$(1.1) x^{-} = \xi x + (1 + \xi x + \xi^{2} x^{2} + \cdots + \xi^{p^{k-2}} x^{p^{k-2}})$$

is a permutation of F_{pk} , with inverse given by

$$(1.2) x = \xi^{p^{k-2}}(1 + x + x^2 + \cdots + x^{p^{k-2}}) + \xi^{p^{k-2}}x.$$

Furthermore, the permutation \cap is of period p^k ,

(1.3)
$$x^{n_k} = (\cdots (x^n)^n \cdots)^n (p^k\text{-iterations}) = x$$
.

Proof. Since $a^{p^k-1}=1$, $a \in F_{p^k}$, $a \neq 0$, therefore, by (1.1), $x = \xi x + \{[(1-(\xi x)^{p^k-1}]/(1-\xi x)\} = \xi x$, if $x \neq 0$ and $\xi x \neq 1$. Furthermore, by (1.1), 0 = 1 and $(1/\xi) = p^k \cdot 1 = 0$. Hence, 0 = 1, $1 = \xi$, $\xi = \xi^2$, $(\xi^2) = \xi^3$, ..., $(\xi^{p^k-2}) = 0$. This proves (1.3). To prove (1.2), observe that the right-side of (1.2) is equal to

$$\frac{1}{\xi}x + \frac{1}{\xi}\left\{\frac{1-x^{p^k-1}}{1-x}\right\} = \frac{1}{\xi}x$$
, if $x \neq 1$ and $x \neq 0$.

Moreover, if $x \neq 0$ and $x \neq 1/\xi$, then $x = \xi x$ and hence $x = (1/\xi)x$. Since (1.2) clearly holds for x = 0, $x = 1/\xi$, and x = 1, therefore (1.2) is true for all elements of F_{pk} , and the theorem is proved.

COROLLARY 2. Under the permutation $\widehat{\ }$, F_{p^k} suffers the cyclic permutation

$$(1.4) (0, 1, \xi, \xi^2, \xi^3, \cdots, \xi^{p^k-2}).$$

Following [1], we call x the normal negation of x, and call the cyclic group D whose generator is x the normal group. By Theorem 1, it is now clear that

$$D = D(\xi) = \{\text{identity}, \widehat{}, \widehat{}^2, \widehat{}^3, \cdots, \widehat{}^{pk-1}\}$$
.

As in [1], we define

$$(1.5) a \times b = (a \times b) .$$

It is readily verified that

$$a \times \mathbf{0} = a = 0 \times \mathbf{a}.$$

COROLLARY 3. The elements of F_{pk} are equationally definable in terms of the D-logic.

Proof. By Corollary 2, it is easily seen that

$$0 = xx^{2} \cdots x^{p^{k-1}}$$

$$1 = 0^{2}$$

$$\xi = 1^{2}$$

$$\xi^{2} = \xi^{2}$$

$$\vdots$$

$$\xi^{p^{k-2}} = (\xi^{p^{k-3}})^{2}$$

and the corollary follows.

We recall from [3] the *characteristic function* $\delta_{\mu}(x)$, defined as follows: for a given $\mu \in F_{p^k}$,

(1.8)
$$\delta_{\mu}(x) = \begin{cases} 1 & \text{if } x = \mu \\ 0 & \text{if } x \neq \mu \end{cases}.$$

In view of Corollory 2, it is easily seen that, for any given $\mu \in F_{r^k}$, there exists an integer r such that $\mu \cap r = 0$. Then, clearly,

(1.9)
$$\delta_{\mu}(x) = \delta_0(x^{-r})$$
 where $\mu^{-r} = 0$.

Now, let $\sum_{\alpha_i \in F}^{\times} \alpha_i$ denote $\alpha_1 \times \alpha_2 \times \alpha_3 \cdots$, where $\alpha_1, \alpha_2, \alpha_3, \cdots$ are the elements of F. Then, by (1.6) and (1.8), we have the identity [3]

$$(1.10) f(x, y, \cdots) = \sum_{\alpha, \beta, \cdots \in F_{\alpha}k}^{\times} f(\alpha, \beta, \cdots) (\delta_{\alpha}(x)\delta_{\beta}(y)\cdots).$$

In (1.10), α , β , \cdots range over all the elements of F_{p^k} while x, y, \cdots are indeterminates over F_{p^k} . We shall use (1.9) and (1.10) presently.

LEMMA 4. The characteristic functions $\delta_{\mu}(x)$, $\mu \in F_{p^k}$, are equationally definable in terms of the D-logic.

Proof. Since $x^{p^{k-1}} = 1$, $x \neq 0$, $x \in F_{p^k}$, therefore, $\delta_0(x) = ((x^{p^{k-1}})^{-})^{p^k-1}$. Hence $\delta_0(x)$ is equationally definable in terms of the D-logic. Therefore, by (1.9), $\delta_{\mu}(x)$ is also equationally definable in terms of the D-logic, and the lemma is proved.

We are now in a position to prove the following.

THEOREM 5. The Galois field $(F_{p^k}, \times, +)$ is a ring-logic (mod D).

Proof. By (1.10), we have,

$$x+y=\sum\limits_{lpha}\sum\limits_{eta\in F_{ak}}^{ imes}(lpha+eta)(\delta_{lpha}(x)\delta_{eta}(y))$$
 .

Now, by Corollary 3, $\alpha + \beta$ is equationally definable in terms of the

D-logic. Moreover, by Lemma 4, each of the characteristic functions $\delta_a(x)$ and $\delta_{\beta}(y)$ is equationally definable in terms of the D-logic. Hence the "+" of F_{p^k} is equationally definable in terms of the D-logic $(F_{p^k},\times,\frown,\frown)$. Next, we show that $(F_k,\times,+)$ is fixed by its D-logic. Suppose then that there exists another ring $(F_{p^k},\times,+')$, with the same class of elements F_{p^k} and the same " \times " as $(F_{p^k},\times,+)$ and which has the same logic as $(F_{p^k},\times,+)$. To prove that +'=+. Since both $(F_{p^k},\times,+)$ and $(F_{p^k},\times,+')$ have the same class of elements and the same " \times ", it readily follows that $(F_{p^k},\times,+')$ is also a Galois field with exactly p^k elements. Since, up to isomorphism, there is only one Galois field with exactly p^k elements, therfore, +'=+, and the theorem is proved.

2. The General Case. In order to extend Theorem 5 to any finite commutative ring with zero radical, the following concept of independence, introduced by Foster [2], is needed.

DEFINITION. Let $\overline{A}=\{A_1,A_2,\cdots,A_n\}$ be a finite set of algebras of the same species S_p . We say that the algebras A_1,A_2,\cdots,A_n are independent if, corresponding to each set $\{\varphi_i\}$ of expressions of species S_p $(i=1,\cdots,n)$ there exists at least one expression ψ such that $\psi=\varphi_i \pmod{A_i}$ $(i=1,\cdots,n)$. By an expression we mean some composition of one or more indeterminate-symbols ξ,\cdots in terms of the primitive operations of A_1,A_2,\cdots,A_n ; $\psi=\varphi \pmod{A}$ means that this is an identity of the algebra A.

We now examine the independence of the *D*-logics $(F_{p_i^k}, \times, \widehat{}, \underline{})$. Indeed, we have the following (compare with [2]).

THEOREM 6. Let p_1, \dots, p_t be distinct primes. Then the D-logics $(F_{p_i^k i}, \times, \widehat{}, \widecheck{})$ are independent.

 $Proof. \;\; ext{Let} \;\; n_i = p_i^{k_i}, \;\; F_i = F_{p_i} k_i = \{0,\,1,\,\lambda,\,\lambda^2,\,\cdots,\,\lambda^{n_i-2}\}, \;\;\; n = \max_{1 \leq i \leq t} \{n_i\}, \;\; N = \prod_{j=1}^t n_j, \;\; n_i N_i = N, \;\; E = \xi \xi \widehat{} \xi \widehat{}^{-1}.$

It is easily seen, since the n_i 's are distinct prime powers, that

$$|_i(\xi) = (E^{igthippi_{N_i}})^{n_i-1} = egin{cases} 1 \pmod{F_i} \ 0 \pmod{F_i} \end{cases} \ (j
eq i) \; .$$

Now, to prove the indepedence of the logics $(F_i, \times, \widehat{},)$ $(i = 1, \dots, t)$ let $\varphi_1, \dots, \varphi_t$ be any set of t expressions of species $x, \widehat{}, \widehat{}, \widehat{}, i.e.$, primitive compositions of indeterminate-symbols in terms of the operations $x, \widehat{}, \widehat{}$. Define an expression $K(\varphi_1, \dots, \varphi_t)$ as follows (compare with [2]):

$$K(\varphi_1, \dots, \varphi_t) = (\varphi_1 \cdot |_1(\xi)) \times (\varphi_2 \cdot |_2(\xi)) \times (\varphi_1 \cdot |_t(\xi))$$
.

Then it is easily seen that $K(\varphi_1, \dots, \varphi_t) = \varphi_i \pmod{F_i}$ $(i = 1, \dots, t)$, since $a \times_{\square} 0 = 0 \times_{\square} a = a$, and the theorem is proved.

We shall now extend the concept of ring-logic to the direct sum of certain ring-logics. We denote the direct sum of A_1 and A_2 by $A_1 \oplus A_2$. The direct power A^m will denote $A \oplus A \oplus \cdots \oplus A$ (m summands).

THEOREM 7. Let A be any subdirect sum with identity of (not necessarily finite) subdirect powers of the Galois fields $F_{r_i^{k_i}}$ $(i=1, \dots, t)$. Then A is a ring-logic (mod D).

Proof. Let q_1, \dots, q_r be the distinct primes in $\{p_1, \dots, p_t\}$. Since the Galois Fields $F_{p^{k_i}}$ and F_{p^k} are both subfields of $F_{p^{k_ik_j}}$, it is easily seen that A is a subring of a direct sum of direct powers of $F_{q_i^{h_i}}$, $(i=1,\dots,r)$; i.e., A is a subring of $F_{q_1^{h_1}}^{m_1} \oplus \dots \oplus F_{q_r^{h_r}}^{m_r}$ for some positive integers h_1, \dots, h_r . Now, by Theorem 5, each $F_{q_i^{h_i}}$ is a ring-logic (mod D), and hence exists a D-logical expression φ_i such that, for every $x_i, y_i \in F_{q_i^{h_i}}$ $(i=1,\dots,r)$,

$$x_i + y_i = \varphi_i(x_i, y_i; \times, \widehat{}, \underline{})$$
.

Since, by Theorem 6, the *D*-logics $(F_{q_i^h i}, \times, \widehat{}, \widecheck{})$ $(i = 1, \dots, r)$ are independent, there exists a *D*-logical expression K such that

$$K = egin{cases} arphi_1 \pmod{F_{q_1^{h_1}}} \ \cdots \ arphi_r \pmod{F_{q_r^{h_r}}} \ . \end{cases}$$

Therefore, for every $x_i, y_i \in F_{q_i^{h_i}}$ $(i = 1, \dots, r)$,

$$x_i + y_i = \varphi_i = K(x_i, y_i; \times, \widehat{}, \widecheck{})$$
.

Hence, the *D*-logical expression K represents the "+" of each $F_{q_{i}^{h_{i}}}$. Since the operations are component-wise in the direct sum $F_{q_{i}^{h_{1}}} \oplus \cdots \oplus F_{q_{i}^{m_{r}}}^{m_{r}}$, therefore, for all x, y in this direct sum, we have,

$$x + y = K(x, y; \times, \widehat{}, \underline{\smile})$$
.

Hence, a fortiori, the "+" of the subring A is equationally definable in terms of the D-logic.

Next, we show that A is fixed by its D-logic. Suppose there exists a "+" such that $(A, \times, +')$ is a ring, with the same class of elements A and the same " \times " as the ring $(A, \times, +)$, and which has the same logic $(A, \times, \widehat{\ }, \widehat{\ })$ as the ring $(A, \times, +)$. To prove that +' = +. Now, since A is a subdirect sum of subdirect powers of $F_{p_i^k}$, therefore, a new "+" in A defines and is defined by a new

"+" in $F_{p_i^{k_i}}$, "+" in $F_{p_i^{k_2}}$, ..., "+" in $F_{p_i^{k_i}}$, such that $(F_{p_i^{k_i}}, \times, +'_i)$ is a ring $(i=1,\dots,t)$. Furthermore, the assumption that $(A,\times,+')$ has the same logic as $(A,\times,+)$ is equivalent to the assumption that each $(F_{p_i^{k_i}},\times,+'_i)$ has the same logic as $(F_{p_i^{k_i}},\times,+)$ $(i=1,\dots,t)$. Since, by Theorem 5, $(F_{p_i^{k_i}},\times,+)$ is a ring-logic, and hence with its "+" fixed, it follows that $+'_i=+$ $(i=1,\dots,t)$. Hence +'=+, and the theorem is proved.

Now, it is well known (see [4]) that any finite commutative ring with zero radical and with more than one element is isomorphic to the complete direct sum of a finite number of finite fields. Hence, Theorem 7 has the following

COROLLARY 8. Any finite commutative ring with zero radical is a ring-logic (mod D).

It is also well known (see [1; 5]) that every p-ring (p prime) is isomorphic to a subdirect power of F_p , and every p^k -ring (p prime) is isomorphic to a subdirect power of F_{p^k} . Hence, by letting t=1 in Theorem 7, we obtain the following (compare with [1; 7])

COROLLARY 9. Any p-ring with identity, as well as any p^k -ring with identity, is a ring-logic (mod D).

Now, let n be a fixed integer, $n \ge 2$. It is well known that a ring R which satisfies $x^n = x$ for all x in R is isomorphic to a subdirect sum of (not necessarily finite) subdirect powers of a *finite* set of Galois fields. Hence Theorem 7 has the following

COROLLARY 10. Let R be a ring with unit such that $x^n = x$ for all x in R, where n is a fixed integer, $n \ge 2$. Then R is a ringlogic (mod D).

3. The natural group and the normal group. Let $(R, \times, +)$ be a commutative ring with unit 1. We recall (see [1]) that the natural group N is the group generated by $x^{\wedge} = x + 1$ (with inverse $x^{\vee} = x - 1$). In [7], it was shown that $(F_{pk}, \times, +)$ is a ring-logic (mod N), and hence the "+" of F_{pk} is equationally definable in terms of the N-logic $(F_{pk}, \times, ^{\wedge})$. Moreover, by Theorem 5, $(F_{pk}, \times, +)$ is a ring-logic (mod D), and hence the "+" of F_{pk} is equationally definable in terms of the D-logic $(F_{pk}, \times, ^{\wedge})$. Of the two rival logics, $(F_{pk}, \times, ^{\wedge})$ requires only a knowledge of the multiplication table in F_{pk} since, by Corollary 2, the effect of \bigcap on F_{pk} is the cyclic permutation $(0, 1, \xi, \xi^2, \dots, \xi^{pk-2})$. In this sense, the D-logical formula for the "+" of F_{pk} is a strictly multiplicative formula, and addition is thus

equationally definable in terms of multiplication whenever the generator ξ is chosen (compare with [1]). The situation is quite different in the case of the N-logical formula for the "+" of F_{pk} , since the generator $x^{\wedge} = x + 1$ of the natural group N already involves a limited use of the addition table.

REFERENCES

- 1. A. L. Foster, p^k-rings and ring-logics, Ann. Scn. Norm Pisa, 5 (1951), 279-300.
- 2. ——, The identities of—and unique subdirect factorization within—classes of universal algebra, Math. Z., 62 (1955), 171-188.
- 3. ———, Generalized Boolean theory of universal algebras, Part I, Math. Z, 58 (1953), 306-336.
- 4. N. H. McCoy, Rings and ideals, Carus Math. Monog., 8 (1947).
- 5. N. H. McCoy and D. Montgomery, A representation of generalized Boolean rings, Duke Math J., 3 (1937), 455-459.
- 6. M. H. Stone, The theory of representations of Boolean algebras, Trans. Amer. Soc., **40** (1936), 37-111.
- 7. A. Yaqub, On certain finite rings and ring-logics, Pacific J. Math., 12 (1962), 785-790.

UNIVERSITY OF CALIFORNIA, SANTA BARBARA

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

ROBERT OSSERMAN

Stanford University Stanford, California

M. G. Arsove

University of Washington Seattle 5, Washington

J. Dugundji

University of Southern California Los Angeles 7, California

LOWELL J. PAIGE

University of California Los Angeles 24, California

ASSOCIATE EDITORS

E. F. BECKENBACH

B. H. NEUMANN

F. WOLF

K. Yoshida

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY CALIFORNIA RESEARCH CORPORATION SPACE TECHNOLOGY LABORATORIES NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should by typewritten (double spaced), and on submission, must be accompanied by a separate author's résumé. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published quarterly, in March, June, September, and December. Effective with Volume 13 the price per volume (4 numbers) is \$18.00; single issues, \$5.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: \$8.00 per volume; single issues \$2.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Pacific Journal of Mathematics

Vol. 14, No. 2

June, 1964

Tom M. (Mike) Apostol and Herbert S. Zuckerman, <i>On the functional equation</i>				
F(mn)F((m, n)) = F(m)F(n)f((m, n))	. 377			
Reinhold Baer, Irreducible groups of automorphisms of abelian groups	. 385			
Herbert Stanley Bear, Jr., An abstract potential theory with continuous kernel	. 407			
E. F. Beckenbach, Superadditivity inequalities	. 421			
R. H. Bing, The simple connectivity of the sum of two disks	. 439			
Herbert Busemann, Length-preserving maps	. 457			
Heron S. Collins, Characterizations of convolution semigroups of measures	. 479			
Paul F. Conrad, The relationship between the radical of a lattice-ordered group and				
complete distributivity	. 493			
P. H. Doyle, III, A sufficient condition that an arc in S^n be cellular				
Carl Clifton Faith and Yuzo Utumi, Intrinsic extensions of rings	. 505			
Watson Bryan Fulks, An approximate Gauss mean value theorem	. 513			
Arshag Berge Hajian, Strongly recurrent transformations	. 517			
Morisuke Hasumi and T. P. Srinivasan, <i>Doubly invariant subspaces. II</i>	. 525			
Lowell A. Hinrichs, Ivan Niven and Charles L. Vanden Eynden, <i>Fields defined by</i>				
polynomials	. 537			
Walter Ball Laffer, I and Henry B. Mann, Decomposition of sets of group				
elements	. 547			
John Albert Lindberg, Jr., Algebraic extensions of commutative Banach				
algebras	. 559			
W. Ljunggren, <i>On the Diophantine equation</i> $Cx^2 + D = y^n \dots$. 585			
M. Donald MacLaren, Atomic orthocomplemented lattices	. 597			
Moshe Marcus, Transformations of domains in the plane and applications in the				
theory of functions	. 613			
Philip Miles, B* algebra unit ball extremal points	. 627			
W. F. Newns, On the difference and sum of a basic set of polynomials	. 639			
Barbara Osofsky, Rings all of whose finitely generated modules are injective	. 645			
Calvin R. Putnam, Toeplitz matrices and invertibility of Hankel matrices	. 651			
Shoichiro Sakai, Weakly compact operators on operator algebras	. 659			
James E. Simpson, Nilpotency and spectral operators	. 665			
Walter Laws Smith, On the elementary renewal theorem for non-identically				
distributed variables	. 673			
T. P. Srinivasan, Doubly invariant subspaces	. 701			
J. Roger Teller, On the extensions of lattice-ordered groups	. 709			
Robert Charles Thompson, <i>Unimodular group matrices with rational integers as</i>				
elements	. 719			
J. L. Walsh and Ambikeshwar Sharma, Least squares and interpolation in roots of				
unity	. 727			
Charles Edward Watts, A Jordan-Hölder theorem	. 731			
Kung-Wei Yang, On some finite groups and their cohomology	. 735			
Adil Mohamed Yaqub, On the ring-logic character of certain rings	. 741			
Paul Ruel Voung A note on pseudo-creative sets and cylinders	7/10			