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l Notation, and Definitions. We will use N to denote the set
of all nonnegative integers. Unless specifically mentioned otherwise,
all sets are considered subsets of JV. If A is a set, A' = N — A. Since
we consider only sets of nonnegative integers, we will not use Cartesian
products of sets but will instead work with images of Cartesian products
under some effective mapping. More specifically, if A and B are sets,
let A 0 B = {(α, b) | a e A and b e B}. Let τ be any one-to-one effective
mapping of N(£) N onto N. Then we define A x B to be τ(A ® B), and we
abbreviate τ((a, b)) to <α, by. (This is the notation introduced by Rogers
in [4].) Given integers a and b we can always effectively find the
integer ζa, by, and given the integer <α, by we can always effectively
find a and 6.

In [2], My hill has called a set a cylinder if it is recursively isomorphic
to B x N for some r.e. set B; however we will follow Rogers in calling
a set, A, a cylinder if it is recursively isomorphic to B x N for any
set B. Such a set A is called a cylinder of B.

For definitions of recursive, simple, and creative sets, see [3]. A
noncreative, recursively enumerable (r.e.), set A has been called pseudo-
creative if for every r.e. set Be: A' there is an infinite r.e. set CaA'
such that B f) C = 0. A nonrecursive r.e. set A has been called
pseudo-simple if there is an infinite r.e. set B c A! such that A\J B
is simple. We will denote the class of all recursive sets by ^0» the
class of all simple sets by ^ i , the class of all pseudo-simple sets by
^2, the class of all pseudo-creative sets by <g\, and the class of all
creative sets by ^ 4 . These classes are pairwise disjoint and every r.e.
set falls into one of the classes ([2]).

Let A and B be sets. We write A^B if there is a one-to-one
recursive function such that xeA if and only if f(x)eB, A^mB if
there is some recursive function g such that x e A if and only if
g(x) e ΰ , and A ^btt B if A is reducible to B via bounded truth-tables.
If there is no recursive function g such that x e A if and only if
g(x)eB, we write A SmB. If both A Sm B and B ^ m A, we write

2. Introduction and preliminaries* In [2] it is shown that the
class of pseudo-creative sets is nonempty by proving that the cylinder
of any nonrecursive, noncreative, r.e. set is pseudo-creative. In this
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note we shall show that there is a pseudo-creative set which is not a
cylinder, and we shall develop some related facts concerning the relation
between pseudo-creative sets and cylinders.

LEMMA 1 (Myhill). Every creative set is a cylinder. Every
recursive set which is infinite and has an infinite complement is a
cylinder. The empty set and N are cylinders. If A is pseudo-creative,
pseudo-simple, or simple, then any cylinder of A is pseudo-creative.
No simple set or pseudo-simple set is a cylinder. If A is r.e., then
A ^ilA x N and A x N ̂ m A.

Proof. The proofs are straightforward and may be found in [2].
The requirement in the last assertion that A be r.e. may be omitted.

LEMMA 2. Let A be a cylinder. Then there exists a one-to-one
recursive function f such that xeA implies that {x, f(x), f\x)y f%x), •}
is an infinite r.e. subset of A, and x e A! implies that {x, f(x), f \ % ) ,
f\x), •••} is an infinite r.e. subset of A!.

Proof. W e m a y a s s u m e A — B x N f o r s o m e s e t B . D e f i n e
f(ζx, n» = <x,n + 1>.

LEMMA 3 (Post-Shoenfield). If B is a r.e. set and if A^bttB
where A is creative, then B is either creative or pseudo-creative.

Proof. In [3] it is shown that B cannot be recursive or simple.
In [5] it is shown that B cannot be pseudo-simple.

LEMMA 4. Let A e ί^, B e ̂  , and A^λB. Then i ^ j .

Proof. The proof follows easily from the definitions and will be
omitted.

LEMMA 5 (Fischer). There is a simple set S such that S x S^LmS.

Proof. See [1].

3, Results* An infinite set which contains no infinite r.e. subset
is called immune ([3]).

LEMMA 6. If A is a nonimmune infinite set, then A x N^XA x A.

Proof. Let B be an infinite r.e. subset of A and let g be a one-
to-one recursive function whose range is B. Define h(ζa, by) = <α, #(&)>.
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Then h is a one-to-one recursive function and x e A x N if and only
if h(x) eA x A.

COROLLARY 1. Suppose S is simple or pseudo-simple. Then
S x S is pseudo-creative.

Proof. By Lemma 6, S x N^S x S. By Lemma 1 S x N is
pseudo-creative and therefore by Lemma AS x Sis either pseudo-creative
or creative. Since S x S ^btt S, by Lemma 3 S x S cannot be creative.

THEOREM 1. Let A be an infinite nonimmune set. Then AxA^mA
implies that A x A is a cylinder.

Proof. Suppose A x A ^mA via the recursive function g. Define
h(ζa, δ» = <g«α, 6», <α, 6». Then Ax A ^ A x iVvia h. By Lemma 6,
A x N ̂ x A x A. Thus A x A is recursively isomorphic to A x N.

THEOREM 2. Let A be any infinite r.e. set which is not pseudo-
creative. Then A x A ^m A if and only if A x A is a cylinder.

Proof. In view of the preceding theorem, we need only prove
that if A x A is a cylinder then A x A ^mA.

If A is creative or recursive so is A x A, and in this case
A x A ΞΞΞW A and A x A is a cylinder. Therefore we may assume that
A is simple or pseudo-simple. Let Ba A! be a r.e. set such that A\J B
is simple. (If A is simple, B is finite.) Let B0 = AxN{jNxB,
and let Bλ = N x A U B x N. BQ U Bx is simple, for otherwise there
is an infinite r.e. set CaB'onB[, and this implies that either
{χ I (3y)K%, V> G C]} is an infinite r.e. subset of A' Π Br or {y | (3#)[<#, #> e C]}
is an infinite r.e. subset of A! Γ) Bf.

Assume A x A is a cylinder and let / be the recursive function
described in Lemma 2. (So xeAx A implies that {%,f(x),f2(x), •••}
is an infinite r.e. subset of A x A and x e (A x Ay implies that
{x,f{x),f\x)> •••} is an infinite subset of (A x A)f.)

To obtain a many-one reduction of A x A to A: Given x, enumerate
{xJf{x)jf\x)1f\x)j •••}, Bo, and Bx. Since J50 U Bλ is simple, we must
eventually find an integer <c, d> either in {x,f(x),f\x), •• } Π S 0 or
in {x, f(x)9 f\x)j •••} Π Bx. In the former case define g(x) = d; in the
latter case define g(x) = c. Then a? e A x A if and only if g(x) e A.

We next modify Theorem 2 to characterize a class of pseudo-creative
noncy Under s.

COROLLARY 2. Lei A be a r.e. set which is not pseudo-creative.
Then Ax A is a pseudo-creative noncylinder if and only if A x A^mA.
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Proof. If A is recursive, A x A is also recursive and A x A is
many-one equivalent to A. If A is creative, since A ^ i i x J V ^ i A x i ,
A x A is also creative and hence many-one equivalent to A. The
corollary now follows from Theorem 2 and Corollary 1.

COROLLARY 3. There exists a pseudo-creative set which is not a
cylinder and which is bounded-truth-table reducible to a simple set.

Proof. By Lemma 5 there is a simple set S such that S x S SmS.
Since S x S ̂ btt S, S x S is the desired set.

Our next theorem shows that Theorem 2 cannot be strengthened
to include the pseudo-creative sets.

THEOREM 3. There is a pseudo-creative set A such that A x A
is a cylinder but A x A SmA.

Proof. Let S be a simple set such that S x S -$>m S. Then

S=mSx N^Sx SSΛSx S) xNSΛSxN) x (S x N).

Let A = S x N. Then A x A is clearly a cylinder, but A x A Sm A
implies that S x S ̂ =mS, a contradiction. Thus i x i ^ i , and by
either Lemma 1 or Theorem 2, A is pseudo-creative.

Since any set is many-one equivalent to its cylinder and all creative
sets are many-one equivalent, the cylinder of any pseudo-creative set
is still pseudo-creative. Thus, since any set is one-to-one reducible to
its cylinder, we might hope to subclassify the pseudo-creative sets into
cylinders and noncylinders and obtain for the subclassification a result
analogous to Lemma 4. In view of the following theorem, such an
analogue fails.

THEOREM 4. There exist pseudo-creative sets A and B such that
A is a cylinder and ASiB, but B is not a cylinder.

Proof. Let A = S x N and B = S x S where S is a simple set
such that S x S ̂ mS. By Theorem 2, S x S is not a cylinder, and
by Lemma 6, A^ίlB. By Lemma 1 A is pseudo-creative, and by
Corollary 1, B is pseudo-creative.

REMARKS. 1. In another paper we shall show that there is a
pseudo-creative set which is not a cylinder and which, in contrast
to those pseudo-creative noncylinders constructed by using Theorem 2,
is not bounded-truth-table reducible either to a simple set or to a
pseudo-simple set.

2. The author does not know if there is a simple, pseudo-simple,
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or pseudo-creative set A such that A x A^mA. The question of whether
such a set exists is equivalent to the following question: Is it true
that if A is a r.e. set, then A x A ^m A if and only if A is either
recursive or creative?
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