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Introduction. The purpose of this paper is to give a method of
determining the essential spectrum of a class of ordinary differential
operators in L? of an interval with o as a singular endpoint. The
method relies on the mapping theorem for the essential spectrum,
proved for ordinary differential operators by Rota [9]. A discussion
of this type of theorem is presented in §1. The essential spectrum
of the constant coefficient operator and the Euler operator is determined
in §4. It is found that the essential spectrum of the Euler operator
is an algebraic curve which varies with the index »,1 < p < oo.

In §85 and 6 the class of differential operators which are compact
with respect to the constant coefficient operator, or Kuler operator, is
determined. By a fundamental theorem of perturbation theory, these
operators may be added to the original operator without altering the
essential spectrum.

The results apply to differential equations of Fuchsian type. This
includes the Riemann differential equation, whose spectral theory was
investigated by Rota [10].

1. Spectral mapping theorems. Let A be a closed, densely-
defined operator in a Banach space X. A is a Fredholm operator if
the null space .#7(4) of A is finite dimensional and the range <#(A)
of A is closed and of finite codimension in X. The Fredholm index
of A is the number

k(A) = dim 47(4) — codim #(A4) .

A complex number A is in the essential resolvent set of A, denoted
by o0.A), if A\] — A is a Fredholm operator. Otherwise N is in the
essential spectrum of A, denoted by 0.,(4). p(A) and ¢(A) will denote
the resolvent set and spectrum of A respectively.

Let B(%X) denote the ring of bounded operators on %X, and let &
denote the ideal of compact operators in <Z(X). v = FX)/¥ is a
Banach algebra. The coset A + & of an element A e .<Z(X) will be
denoted by A, and its spectrum will be denoted by sp(A). The in-
vertible elements of .o~ are the cosets B = B + &, where Be Z(¥)
is a Fredholm operator (cf [1]). In particular, sp(4) = 0,(4) for all
Ae Z(%).
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756 E. BALSLEV AND T. W. GAMELIN

LEMMA 1. Let Ae Z (%), and let f be analytic in a neighborhood
of 0(A). Then o(f(4)) = f(0(A)). If e pl4), then

w(pI — f(A)) = Z{e( — A): v e f ()},

where N is counted in the set f~(u) according to its multiplicity as
a solution of f(z) — 1 = 0.

Proof. The first assertion of the lemma is a trivial consequence
of the spectral mapping theorem for Banach algebras:

0.(f(4) = sp(f @A) = sp(f(A) = f(sp(A)) = f(@.(A)) .
By replacing f by ¢ — f it suffices to establish the formula
£(f(A)) = Z{e(I — A): ne f70)} .

We can decompose the spectrum of A into a finite number of
spectral (closed and open) subsets F;, 1 =1, -:-,n, such that f is
analytic in an open connected neighborhood of each F;. Corresponding
to each spectral set F);,, there is a projection E; onto a closed invariant
subspace %; of X such that I = >\'_, E;, E;E; =0, 1 ++ j, and (A |%,) =
F; (cf [5], VII. 3).

Since the index « satisfies the appropriate additivity conditions, it
suffices to prove the formula for the restriction operators A|%,;, i.e.
we may assume that f is analytic in a connected open neighborhood
of a(4).

If f is identically zero, then f(A) = 0 is Fredholm, so % is finite
dimensional, and the result is trivial. If f is not identically zero, it
has a finite number of zeros z, :--, 2,€0(4), counted according to
their multiplicity. Let

92) = f@))(z, —2) - (2, — 2) .

g is analytic and nonzero in a neighborhood of ¢(A4), so g(A4) is in-
vertible and has index zero. Now

f(A) = (& — A) -+ (z,]— A)g(4),

where the 2,7 — A are Fredholm. Since the index of a product of
Fredholm operators is the sum of their indices, we have

R(F(A) = 3 k(eid — A)

= (eI — A): e £740) N a(A)}
= SO — A): e f-0)} .

If A and B are unbounded operators with domains < (A4) and



THE ESSENTIAL SPECTRUM OF A CLASS 757

Z(B), then their product is defined by
Z(AB) = {x e 2 (B): Bx€ 2 (A)}, (AB)x = A(Bx) .

A and B commute if AB = BA.

If A and B are closed, densely-defined Fredholm operators, then
AB is closed and densely-defined, AB is Fredholm, and £(AB) = k(4) +
£(B) (ef [6]). Conversely, if {4;)*, is a commuting set of closed
operators such that A=A, .-+ A, is closed, densely-defined and Fredholm,
then each of the A, is densely-defined and Fredholm. For #(4A)=2_7+7(4)
and H#(4) & #(A,) for each ©. As a special case of these remarks,
we can state a version of Lemma 1 for unbounded operators. For
ordinary differential operators, the spectral mapping theorem is due to
Rota [9].

LeMMA 2. Let A be a closed, densely-defined operator in X, and
let p be a polynomial of degree n.

(a) If p(o.,(A)) is mot the entire complex plane, then p(A) is
densely defined and closed.

(b) If p(A) is densely defined and closed, then o, (p(A)) = p(c.(A)).

If e p.(p(4),
w(p] — p(A)) = 3Ol — 4,

where \,, -++, N, are the solutions of p(r) — pt = 0, counted according
to their multiplicity.

Proof, pI — p(A) = (I — A)--+- (M, — A), where the NI — A
commute. If p¢¢p(o,(A)), then each \; is in p,(A4), so pl — p(4) is
densely-defined and closed. Hence p(A4) is densely-defined and closed.

Part (b) of the lemma is a consequence of the preceeding discussion.

2. Some basic facts about linear operators. Let A be a closed
densely-defined linear operator in a Banach space X. The domain < (4)
of A becomes a Banach space when endowed with the A-topology, or
graph topology, defined by the norm ||z, = |l«| + ||Ax|. A linear
operator B: & (B) — X is said to be A-defined if <(B)=2 < (A). B
is A-bounded if the restriction of B to =2 (A) is a bounded operator
from < (A4), with the graph topology, to X. Its A-norm || B, is
given by

| Blla= sup {|| B/l .}
2€ gyl4)

B is A-compact if it is compact as an operator from < (A4), with the
graph topology, to ¥%.
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If A’ is a second operator which is closed on Z(A) = & (4),
then the A'-topology for 2 (4) coincides with the A-topology for = (4).
The following lemma gives criteria for A”’= A + B to be closed on
2 (A), and collects certain facts which will be used later.

LEMMA 8. Let A be a closed densely-defined operator in %, and
let B be an A-defined (not cecessarily closed) linear operator in %.
(a) If there exist 0 = a <1 and 0 < B such that

| Br|| = al|lAz|| + Bllx|| for xe 2 (4),

then A + B is closed on < (A).
(b) If B is A-compact, then A + B is closed on <= (4), and
0(A + B) = 0,(4),

k(A + B—N)=k(A— ) for vep,(A).

(¢) If nep,(A), then there is an e(\) > 0 such that || B||, < e(\)
implies ve p,(A + B).

(d) If B is closed and A-compact, then for every € >0, there is
a K(e) > 0 such that

| Bx|| = el Az || + K() ||zl , wxeF(A).

Proof. (a), (b) and (c) are well-known. Suppose that (d) is not
true. Then there is an ¢ > 0 and a sequence {x,} in = (A) such that

|| Bz, || = e || A2, || + n || @] .

Since the inequality is homogeneous, we may assume ||2,|,= 1.
Passing to a subsequence, if necessary, we may assume, that Bz,
converges to y. Since

| Br, || 2z ellwn|la + (=) llw. |l =+ (n — o) |2, 1],

x, converges to 0. Since B is closed, ¥y = 0. On the other hand,
|y || = lim|| Bx,|| = ¢, a contradiction.

The argument establishing part (d) can be found in [4], p. 39.
There are operators B which are A-compact but for which no inequality
of the form ||Bx|| = ¢||Ax|| + K(¢) ||z || obtains.

3. Differential operators. Let (a, 8) be an interval, where
a = —co and B = + oo are allowed as endpoints. A formal differential
expression | on the interval («, B) is an expression of the form

1F)e) = 3, a7 0)

where the a; are complex-valued measurable functions on (a, 8).
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The maximal operator L in L%, B), 1 < p < oo, associated with
l, is defined by

(L) = {fe L (a, B): f¥ exist and are loc. a.c.,, 0=5=<n—1,
l(f)e L"(«,B)} and

Lf=Uf)y, fezd).

The operator Lg is the restriction of L to C= functions with compact
support contained in («, 8).

If L) is closable, then the minimal operator L, associated with
is the closure of L;. A differential operator associated with [ is an
operator L, such that

(L) s 2(L,)s Z2(L)
and
L.f=Uf), [fe=zl).

Under mild restrictions on the coefficients a,(t), for instance, that
a;(t) be locally integrable, 0 < j <% — 1, and that 1/a,(t) be locally
integrable, the maximal operator L is densely defined and closed. In
this case, & (L,) is of finite codimension in = (L).

Any finite dimensional extension of a Fredholm operator is again
Fredholm (cf [6]). Hence, under the preceeding restrictions on the
coefficients a;, 0.(L,) = p.(L) for all differential operators L, determined
by I. This set is called the essential resolvent set of I, and denoted
by o.(1). Its complement o.(l) is the essential spectrum of 1.

If =22(L,) is of codimension £k in < (L), and pep,(), then
(el — L,) = k(ul — L)y — k (cf [6]). To determine the Fredholm index
of puI — L,, it suffices then to find the index of #I — L, or of ul — L,

In the following, D, and D will denote respectively the minimal
and maximal operators in L*(«, B) determined by the differential ex-
pression (If)(t) = f'(t), where («, 8) is the interval under consideration.

4. The basic formulae for the essential spectrum.

THEOREM 1. Let M be the maximal differential operator in
L*[0, ) associated with the expression

(mf)e) = 35 ;1) ,

a; constants.



760 E. BALSLEV AND T. W. GAMELIN

Let 7 be the polynomial
w(z) = i a;@ .
7=0

Then
o.(m) = {w(@ir): —co < r < oo},

If »ep,(m), the Fredholm index x(AI — M) is the number of roots
of m(z) =\, counted according to their multiplicity, which lie in the
half-plane .“(z) < 0.

Proof. The equation g — D,g = f is satisfied by
6(s) = (M — D () = —e| e s 1yt .
0

If Z(0\) <0, then W — D)7'f = kxf, where ke L(—c, ). So
(A — D)™ is bounded, and »ep(D,). In particular, k(A — D) =0
for Z(\) < 0.

If “2(\) >0, the adjoint differential equation of \f = D,f has
the solution e* e L0, ), which must be orthogonal to the range
of \I — D,. If fe #(\I — D),

I — Dyyf(s) = e“re*“f(t)dt .
This is again a convolution operator with an L*-kernel, and so (A — D,)™?
is bounded on # (M — D,). It follows that <#(\I — D,) is the subspace
of L*[0, =) orthogonal to e, and so is closed and of codimension 1
in L?[0, ). Hence A€ 0,(D,) and k(A — D)) = —1 for () > 0.

Since the Fredholm index is constant on each component of 0.(D,),
the line “2(\) = 0 must be the essential spectrum of D,. Since D is
an extension of D, by one dimension, (Al — D) =1 if ZZ(\) < 0 and
k(M — D) = 0 if &) > 0.

This establishes the theorem for the special case of the operator
D. It suffices now to prove that M = m(D);' then the general result
follows from Lemma 2. From the inequality of Lemma 5 we derive
the inequality

I D*fll = K{|MFI +1IF1},  FeCR(0, ).

Thus, the M-norm and D"norm on C;°(0, ) are equivalent, and it
follows, that
(M) = 2(Dp) = 2(x(D,)) .

Since M is an extension of 7(D), and since dim =2 (x(D))/ =2 (n(D,)) = n,
it suffices to show, that dim 2 (M)/=2(M,) = n.

1 Professor S. Goldberg pointed out, that a proof was missing here.
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Since =2(M) = =v(M — A\I), we may assume, by altering the
constant term of m, that M is Fredholm. Then
dim 2(M)/<2(M,) = dim .+ (M) + codim .2 (M,)
= dim 4+ (M) + dim .+"(L)
where L is the maximal differential operator associated with the adjoint
expression (ef. [9]).

We may also assume, that the roots A, <+, N, of 7(2) =0 have
distinet real parts. Then .#7(M) is spanned by the exponentials e,
and _#"(L) is spanned by the exponentials e~*i*, From this it is easy
to conclude that dim /(M) + dim +#"(L) = n.

THEOREM 2. Let the Euler differential expression | on the interval
[1, ) be defined by

W) = 35 bt (o),

where the b, are constants. Let L be the associated maximal operator
wm LP[1, ), 1 < p < ., Let d be the polynomial

a@) = b+ 36, 1T (2 - (%+j>>.

=0
Then o(l) = {d(ir): —c0 < 7 < o}, For ne p(l), the Fredholm index
k(A — L) is the number of rools of d(z) —x =0, counted according
to their multiplicity, which lie in the half-plane F2(z) < 0.
Proof. For fe L*[1, =), we define
(Tf)(s) = el*f(e), 0 = s < oo .

It is easily verified, that 7 is an isometric isomorphism of L?[1, o)
and L7[0, ). Its inverse is given by

f@) = (@'g)t) = t7V7g(log t), L =t < oo .
We have

AF _ prammg(log 8y — %t—ﬂm-lgaog t)

dt
—)p)— d 1 ]
— $—(1/p)—1 _ 4
t [( ds p)g(s) s=logt

By induction on k, the following formula obtains

3:{ — t—u/m—x[(d;‘ls — (% + k- 1>><_d%_ —_ <%. + k- 2>> ces

(e = 7))
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Therefore
(¢ LL)o) =TT (& - (—;— +4))ef @)
Let I, be the differential expression
LG =fP@), 1 St < o,
and let L, be the corresponding maximal operator in L?[1, «). Then
k—1
L, :f“‘jl;[()(D— (% +j>)z-,kg 1.
Consequently,
L=cbnr+ 3 bk'ij (p- (_11)_ +3))]r-
Since the essential spectrum and Fredholm index remain invariant

under isometric isomorphisms, the result follows from Theorem 1.

REMARK. The essential spectrum of L could also be computed by
writing L as a polynomial in the operator x(d/dx), which has the
essential spectrum {—(1/p) + tr, —oco < 7 < o}, The Euler operator
was originally represented as a polynomial by George Boole.

5. Perturbation of the constant coefficient operator. The
inequalities, on which the results of this section are based, are es-
sentially special cases of similar estimates for elliptic partial defferential
operators (cf [4]). Similar results for perturbation of partial differential
operators are obtained in [3]. For p = 2 theorems of this type for
elliptic operators, including Lemma 7, are proved by Birman (ef. [11]).

LEMMA 4. Given € > 0, there exists a constant K, depending only
on p and &, such that

Civeseyra={ s | 10w ratde] 11w pae + K| rey rae}

Jor all N =0, all functions b locally in L*[0, ), and all functions
f in the domain of the maximal operator D im LP[0, o).

Proof. Let r be a small positive number Let a be a continuously
differentiable function on [0, ] such that
0=a=1,a0)=1 and a(r)=0.

If fe 2/(D), then



THE ESSENTIAL SPECTRUM OF A CLASS 763

& = = L@@ £t + s)ds
= —[la@s'¢ + 5as — [ @)1 + s)ds
£ = (177 + 9 1ds + K 15 + 9 1ds
=rnf|1re+ordst” + Ko7+ 9) s}
<o\ 17 + 9 P ds + K[ 1f¢ + 9P dsf

where (1/p) + (1/9) = 1.
If r is chosen so that ¢Y? = rY%,, then

IFOF = SSZ‘f’“ +s)rds + Kﬂlf(t +8)|7ds ;
[ Do s pat

= [0 b elr@r + K176 st

=N O PELIG P+ KIF() Pdtds

={ s [T ra{el” 7@ rds + K[ 116 Ps)

N=<8<oo

LEMMA 5. Given € > 0, there exists K(¢) > 0 such that
ID*fll = ellD*fIl + K@ fll, fe (D), 0=k <mn,

where the norms are taken in L*[0, o).

Proof. Let [0,r] be a finite interval. Replacing f by f’ and
proceeding as in the proof of Lemma 4, we arrive at the inequality
r r 1/
701 = Cored [T 17 + 9 ds + K)| 17 + 9P ds)
Suppose {f,} is a D*bounded sequence in L*[0, r]. It is easy to
see that the derivatives f, are uniformly bounded and equicontinuous
on the interval [0, »]. Hence the operator D in L?[0, r] is compact

with respect to the operator D* in L?[0, 7].
By Lemma 3(d), there exists a K;(r) > 0 such that

K17 +9rdss | 1776+ 9 rds + Ko | 176+ 9 Pds.

If 7 is chosen so that 0 < r» < 1 and &"? = 2C,r"?, then the above
inequalities yield the pointwise estimate
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For e e+ ord+ K@\ 1£¢+ 91 ds .

Integrating from 0 to « and exchanging the order of integration,
we arrive at the following inequality

I DA = ell DFIIP + K@ NP
This is equivalent to an inequality of the form
| DFIl = ell DIl + K@ fII -
Inequalities of the form
| D*fIl = e[ DSl + K@ || f1]

follow easily by induction on k. Since D*** is D"bounded, we finally
obtain an inequality of the desired form

I D*FIl = el D*fil + K@) I f1l

Let b be a measurable function on the interval [0, «), and define
the linear operator B in L?[0, ) by

Z(B) = {fe L’[0, «): bf e L"[0, )},
Bf =b-f, fe 2(B).

B is closed and densely-defined.
In the following, Li.Ja, ) will denote the space of measurable
functions on [a, o) which are locally in L*|a, ).

LEMMA 6. B s D-defined if and only if be L0, ) and

lim supgs“[b(t) Pt < oo .
If B is D-defined, then for every & >0, there ewists a K(¢) > 0
such that
| Bf|| < el| DFI| + K@) |Ifll, fe 2(D) .
In particular, D + B is closed on =Z(D).

Proof. Suppose that B is D-defined. Since B is closed, B is D-
bounded. Let f be a C*-function on (—co, =) such that
0=r=1
fs)=1,0=s=1
f(8 =0, —co <8 —1,2=8< 0,
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Let f,(t) = f(t —s), and let g, be the restriction of f, to the

interval [0, o).
If s= 0, then

| 1owau pae = a1t < 11va, P < 1 BBl 1P
< 1| B3 Kl o + 1F [oicmrm}
Hence be L2 [0, «), and

lim sup Sm]b(t) Pdt < oo .
Conversely, suppose b€ L2[0, =) and
8+1
limsupg 1B(t) |7 dt < oo .
Then
8+1
supS 1B(t) [P dt < oo .
0<8<o0Js

It follows from Lemma 4, with N = 0, that B is D-bounded and
| Bf|| = el DfIl + K() | fll, fe Z(D).
By Lemma 3(a), D + B is closed.

LemMMA 7. B s D-compact if and only if be L]0, <) and

lim S““] bt P dt = 0 .

Proof. Suppose that B is D-compact. By Lemma 6, b< L% [0, ).
Suppose that there exists a sequence s, — - and a K > 0 such that

Ssmlib(t)]pdth, n=1,2 ..

Let {g,,} be the functions defined in the proof of Lemma 6; since {g, }
is a D-bounded sequence, and B is D-compact, we can assume that

1 Bgs, [l =20,
passing to a subsequence if necessary. On the other hand,

| By, |I> = S”"“lb(t) rdt= K,

8n

a contradiction. Hence lim,,_,,,,SHl |b(t) |7 dt = 0.



766 E. BALSLEV AND T. W. GAMELIN

Conversely, suppose that be L%]0, <) and that

lim Sm[ b(t) P dt = 0 .

8—o0 Jg

Let ), denote the characteristic function of [0, N], and define
BNf: XNbf,fe ,@'(D) .
By Lemma 4, there is a constant K > 0 such that
1B = BofIF = | bty pat
8+1
= &{ sup | () P atfll DI + 1710} -

N<=8<oo

Hence || B — Byl|lp— 0 as N— oo, so it suffices to show that each By
is D-compact.

For this purpose, let {f,} be a D-bounded sequence in <=Z(D).
Since

t t 1/p

150 = 50| = || siar| s 1e—spe{[ 11y par}”
the f, are equicontinuous on [0, N]. If {f, 541 1s a subsequence which
converges uniformly on [0, N] then {B,f: j}jf;l converges in L?f[0, ).

Hence B, is D-compact.

THEOREM 3. Let M be the maximal operator in LP[0, <), 1<p< o,
corresponding to the differential expression

(mf)() = i a; (), a; constants, a, = 0 .
3=0

Let B be the maximal operator in L*[0, «) corresponding to the
differential expression

S 60500,

where the b; are measurable.
(@) B s M-bounded if and only if b;e LLJ0, =) and

limsup88+llbj(t) Pdt < 0,0 <j<m—1.
(b) B is M-compact if and only if b;c LE [0, «) and

1im5”1|bj(t)|pdt =0,0=j=<n—1.
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(¢) If B is M-bounded, then for every ¢ > 0 there exists K(¢) > 0
such that

I Bfil = ellMfIl + K@ fl, fe Z(M) .

In particular, M + B 1s closed on = (M).

Proof. Suppose that B is M-bounded. If the functions g, are
constructed as in the proof of Lemma 6, we have

§+1 8+1
sup |16, P at = sup |7 By.t) 1 at
s=0 8 8
= sup || By, ||? = sup | Bl% (|| Mg, || + 11g,1])? < o

Hence b,e L% J0, o) and

lim sup Ss“] by(t) |7 dt < oo

Let 1 =k <n —1 and assume that b; e L0, ) and

loe
s+1 .
limsupg bty Pdt < o0, 0<j<k—1.

The functions g, can be altered so that
gPt)y=1,s<t=<s+1,.

The same type of estimate as used in the preceding paragraph
yields the results

bk € Lﬁc[o, oo)
and

lim sup S”W b(t) |7 dE < oo .

By induction, this holds for all k,0 =k =<n — 1.
Conversely, assume b,(t) € L [0, o) and

s+1 .
limsups 10,8 |7dE < 0, 0<j=m—1.
Let B; be the maximal operator corresponding to the expression

bi(6) SO ().
By Lemma 6,

IB,f 1| < &1 DI || + Ke) [| DFIl, Fe (D)
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From Lemma 5 we can deduce an inequality of the form
| Bif Il = &; | D*fIl + K(&y) || fl, fe 2(D) .

Summing over j we arrive at an inequality of the form
I Bfl| = ellD"fll + K@ fIl, fe 2(D") .

Since M is a polynomial in D of order n, 2(M) = =2 (D"), and the
M-topology is equivalent with the D"-topology for & (M). Hence we
get an inequality of the desired form,

I BfIl = ell MfIl + K@ ISl .

By Lemma 3(a), M + B is closed on &2 (M). This completes the proof
of parts (a) and (c) of the theorem.
If

lim 55“1 bit)Pdt = 0,0 < <n—1,

then each B; is D?*-compact, by Lemma 7. And so B; is D"-compact,
therefore M-compact. Hence B is M-compact.
Conversely, if B is M-compact, then the relations

lim S’“| bu(t) Pdt = 0

can be proved by induction on k£ as in the proof of part (a) and of
Lemma 7.

THEOREM 4. Let M and L be the maximal operators in L?[0, o),
1 < p < o0, corresponding to the differential expressions

(mf)(t) = i a;f9 (), a; constants, a, = 0,
i=o

L)) = (mf)(E) + ]20 b)) .

Suppose b, is continuous and satisfies

bo(t) # —a,, 0 <t < oo
lim b,(¢) = 0 .

t—oo
Suppose b; € L [0, ) and satisfies
8+1
1im§ b, ) Pdt =0, O0=j=n—1.

Then 2(L)= 2 (M), and o) =o0,m). If nep,(m), kO —M)=
(A — L).
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Proof. Let B, be the maximal operator corresponding to the
expression b,(t)f(t).> In view of Theorem 3 and Lemma 38 it suffices
to prove the theorem in the case

@) = (mf)E) + b)) .

So we assume b;(t) = 0,0 = j = » — 1. Since the essential spectrum
and the Fredholm index are localizable to the endpoint <o, and since
the graph topologies of < (L) and < (M) are equivalent on compact
subsets of [0, ), we may assume, by passing to an interval of the
form [N, o), that |b,(t)]| <, 0=t < .

We have

*° ip
1Bl ={{] 1estrr =0 1t}
= el D || < 1 D" 1l MFI + 151D -

If ¢ is sufficiently small, Lemma 3(a) applies, and < (L) = 2(M).
Also, by Lemma 3(c) and suitable choice of &, we must have o,() =
o (m).

Now suppose |b,(t)]| < la,l|,0 =t < o, so that the hypotheses of
the theorem are satisfied for

(e )@) = (mf)(E) + B,

where 0 < 8 =1. We have shown that o,z = o,(m), so that the
function B — k(M — Lg) is well-defined, M€ p,(m). This function is
continuous and integervalued, hence a constant. In particular,
kM — M) = k(M — L).

6. Perturbation of the Euler operator.

THEOREM 5. Let L be the maximal operator in LP[1, o), 1<p< oo,
corresponding to the Euler differential expression

A1)®) = 3 btif9t), b, constants, b, # 0.
7=0

Let C be the maximal operator in LP[1, o) corresponding to the
exPression

S e prIw)
i=0
where the ¢; are measurable,
(@) C is L-bounded if and only if ¢;€ L1, ) and
timsup | eit)Pdt < o for some a> 1,055 n—1

2 Professor S. Goldberg pointed out, that the proof was incomplete. The remaining
part can be found at the end of the paper.
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(b) C is L-compact if and only if c;e Li[l, ) and

lim Sas—t—‘cj(t)k’dt: 0 for some a > 1,0 <n—1.

(¢) If C is L-bounded, then for every € > 0 there exists K(g) > 0
such that

ICrIl = ell LIl + K@ fIl, fe 2(L) .

In particular, L + C s closed on = (L).

Proof. Let M be the maximal operator in L*[0, <) corresponding
to the differential expression

0 =+ 50T (A (241,

and let B be the maximal operator in L?[0, =) corresponding to the
expression

co(e’) + :21 ci(e’) :}Z[: (%ls— — (—;— + k)) .
Let 7 be the isometry of L?[1, =) and L?[0, <) introduced in the proof
of Theorem 2. Then
L ="Mt
and
C=1t"Br.
Also,

es

@s e
" Liewrat={ " e prau.

Combining Theorem 3 and a downward induction argument on the-
coefficients ¢;, we arrive at parts (a) and (b) of Theorem 5. Part (c)
also follows from Theorem 3.

THEOREM 6. Let L and M be the maximal operators in L*[1, ),
1 < p < oo, corresponding to the differential expressions

(I)(E) = 3, bHif9(t), b; constants, b, = 0 .

(mf)() = ) + 3, eOUF9) -
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Suppose ¢, is continuous and satisfies

lime,(t) = 0.
t—o0

Suppose ¢; e L0, «) and satisfies

wsl

tlc,~(t)|”dt=0for some a>1,0=5j=<n—1.

liﬂm S
Then =2(L)= <2 (M), and o(l)=0,(m). Lf nep,(m), kO — M) =
£ — L).

Proof. A straightforward verification, as in the proof of Theorem
5, shows that the transform of Theorem 6 under 7 is Theorem 4.

7. Some special cases. The perturbation criterion of Theorem 5
includes all functions ¢(t) such that ¢="/7¢(t) € L?[1, ). It includes all
bounded measurable functions with limit zero at o. The ecriterion
shows, for instance, that if a <j <mn, then t*f is compact with
respect to the Euler operator of degree n. If & < n, Theorem 6 shows,
that t*f™ has no effect on the essential spectrum of [. In particular,
if

(mf)0) = 3 a;(t)f (1)

is a Fuchsian differential expression, where a,(t) = 0(t"), then m can
be written in the form of Theorem 6, and the essential spectrum of
m can be determined from the coefficients as in Theorem 2.

For instance, consider the Riemann differential expression

. " ’ ct* +dt + e
(mf)(@) = ¢t + 1)f"(t) + (at + b)f'(t) + -—m——f(t) .

BExcept for the change of variable ¢ — —¢ this is the equation'investi-
gated by Rota [10]. By Theorem 6, o,(m) = o.(I), where

(L)) = Ef"(t) + atf'(t) + cf (@) .
By Theorem 2,
o,(l) = {d@r): —oo < r < oo},

where
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Hence

az(m):{—7‘2+fér<a—1—«2—> +i2+(1—a)—1—+c: —o0 <1< oo}.
p p D

This is equivalent to the expression obtained by Rota.

8. Remarks.

(a) The Euler operator in L7(0, 1].
The mapping 7 defined as in the proof of Theorem 2 by

Tf(s) = e’f ()

also establishes an isometric isomorphism of L*(0, 1] and L*(— <, 0].
The Euler operator

L=23 atD
i=o

in L?(0,1] is isometric isomorphic via = to the constant coefficient
operator

A ) ({CRE )
in L?(— o0, 0].

The operator D in L?(— o, 0] is isometric isomorphic to the operator
(—D) in L?[0, co); therefore D in L?(— , 0] has the essential spectrum
{it: —oo <t < oo}, and the Fredholm index of A — D is 0 for FZ\ <0
and 1 for Z\ > 0.

It follows, that I on the interval (0, 1] has the same essential
spectrum as ! on the interval [1, «) and the Fredholm index of N — L
is the number of roots of the polynomial d(z) — A of Theorem 2, counted
with multiplicity, which lie in the half-plane %z > 0.

The perturbation results also carry over to the interval (0, 1]. The
Theorems of §6 are true for the operator L in L?(0,1], when 1 is
substituted for 0 and 0 for oo, in particular we now take the limes and
lim sup of Sw A/u) | e(u) [P du as s — 0.

The Euler operator L in L*(0, ) is isometric isomorphic via 7 to
the constant coefficient operator considered above in LP(— oo, o), and

the essential spectrum is given by the same formula. The Fredholm
index is 0, o.(L) = (L) and L, = L.

(b) The condition

lim supS s%—ib(t) [Pdt < o for some a > 1



THE ESSENTIAL SPECTRUM OF A CLASS 773

is equivalent to the condition

lim sup sg —%;lb(t) Pt < oo

Also, the condition

lim rs%—]b(t) |Pdt = 0 for some a > 1

8§—o 8

is equivalent to the condition
(=1 B
lim s -t—2|b(t) [Pdt =0.
This second set of conditions could just as well have been used

in Theorem 5 and 6.
The proof of these assertions follows from the inequalities

sup S”l |b(t) |” dt < sup asS”L] b(t) |” dt
s=N Js T s=N s 2
=< asup sr—l—l b(t)|?dt ,
sZN s tz
and

=1 = (et
sup s —|b(t)|”dt=sups}]§ Loy pde
S=N s t2 32N a=0 t?

an
alg

o antlg
<sups 3\ " " Libeypar

< ¢ supgws—lt—lb(t)I”dt.

(¢) A Dbasis of solutions fi(\,?), -+, fu(X,t) of a differential
equation I(f) = \f of order » is said to be a norm-analytic basis at
N if there is a neighborhood N of X, such that (i) the functions f;
are analytic in A for € N and (ii) there is an integer %k such that
for each xe N, {f}i., span the set of solutions of I(f) = Mf which
lie in L?. In [10], Rota proved the following criterion:

LEMMA. If at ) either the differential operator I in L* or its
adjoint 1* im L7, (1/p) + (1/g) =1 (cf [9], for definition of adjoint),
does not have a norm-analytic basis of solutions, thenm X\ belongs to
the essential spectrum of 1.

If | is the Euler differential expression of Theorem 2, the equation
I(y) = Ny has solutions @,(t) = t*/, where «; is a root of the algebraic
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equation
b2z —1)eec(z—n+1)+ e +b2z+b=x.

Now ;e L*[1, ) if and only if F(a;) < —(1/p).
Hence [ will not have a norm-analytic basis at any point of the

curve
>»=bn<?3”r—%)(ir—%——l)---(iv'—%—n—i-l)

+---+b1<ir—%>+bo, —o L < o,

This curve is identical to {d(ir): —co < r < o}, where d(z) is the
polynomial defined in Theorem 2.

If ) is not on this curve, then it can be shown that the resolvent
operator (A — [)™ is a sum of integral operators whose kernels are of
the Hardy-Littlewood-Polya type (cf [7], or [5] pp. 531-532). This
yields another proof of Theorem 2, but the details are more complicated.

This method also shows that the essential spectrum of the Euler
operator is precisely the set of points at which ! or [* does not have
a norm-analytic basis of solutions. That this is not true in general
is shown by the following example.

Define

CH)YE)=f'(t) + (sint + tcost) f(t),0 =t < oo
The equation If = )\ f has the solution
PA(t) = exp [t(r — sin?)],

while the adjoint equation [*¢ = A\g has the solution
Pa(t) = 1/Pa(@) .

Now @, € L?[0, ) if () < —1 and @, ¢ L*[0, «) if <2-(\) > —1,
so I does not have a norm-analytic basis on the line Z(\) = —1.

Similarly, {* does not have a norm-analytic basis on the line
Z(\) =1. 1 and I* have norm-analytic bases if “Z(\) # =+1.

Since 0 is a regular endpoint for the differential expression [, a
necessary condition that a point ) be in o.(l) is that either @, € L?[0, o)
or € L0, ), A/p) + (1/g) =1 (cf [9]). Hence the entire strip
{—1 = Z(\) £1} is contained in the essential spectrum of I. It is
easy to see that o.(l) actually coincides with this vertical strip.

It seems possible that the boundary of the essential spectrum of
an arbitrary differential expression consists of points A at which either
If =\f or l*g = Ag does not have a norm-analytic basis of solutions.
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(d) The fact that the isomorphism (zf)(s) = e*2f(e*) converts a
resolvent operator of Hardy-Littlewood-Polya type into a resolvent
operator of convolution type is a special case of the following situation.

Let K be a measurable function on [0, ), and let

(TH@ = L[ K (L) rady, fe L0, ) .

The mapping 7 may be regarded as an isometric isomorphism of
L7[0, ) and L?(—oo, ).
The operator S = zT7! in L?(— o, ) is given by

(So)@) = |~ K(e)emeg@)dz .

S is a convolution operator with kernel
J(,,.) — K’(e—r)e((llp)—l)r .

Conversely, a convolution operator in L?(—o, ) with kernel J de-
termines a Hardy-Littlewood-Polya operator in L?[0, ) with kernel

K(s) = s"»J(—log s) .
The norm of S is at most the L*-norm of J. Hence if
|1 dr = [T KE s7ds <
then T is bounded, and
170 = |1 K@) s ds.
This last statement is just the Hardy-Littlewood-Polya inequality

(et [7]).

Added in Proof. Professor S. Goldberg has pointed out that the
proof that D(L) = D(M) in Theorem 4 is incomplete, i.e., it must be
shown that feL” and lfeL? imply mfeL?. This follows easily
with the aid of a more general form of theorem 3(c), namely, that
inequalities of the form

I Bfll = e llmfl + K|f

obtain, where the norm is taken in L?[0, N) for 1 = N< o, and K
depends on € and » but not on N. These inequalities result from
modifying and sharpening the proofs of § 5.
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