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For any ring A and left (resp. right) A-module £ we let £* denote
the right (resp. left) A-module Hom (¥, A,) (resp. Hom, (¥, A,)) where
A, (resp. A;) denotes A considered as a left (resp. right) A-module,
Then the mapping E-— E** guch that x ¢ F is mapped onto the map-
ping @ — @(x) is linear.

Specker [3] has shown that if F is a free Z-module with a denu-
merable base (where Z denotes the ring of integers) then E is reflexive,
i.e. the canonical homomorphism E — E** is a bijection. In this paper
it is shown that a free module £ with a denumerable base over a dis-
crete valuation ring A is reflexive if and only if A is not complete
and if and only if E is complete when given the topology having finite
intersections of the kernels of the linear forms as a fundamental system
of neighborhoods of O. Specker’s result can be deduced from these re-
sults. We note that this topology has been used and studied by Nunke
[2] and Chase [1].

THEOREM 1. Let A be a discrete valuation ring with prime II
and let K be a free A-module with a denumerable base. Then E 1s
reflexive if and only vf A 1s not complete.

Proof. Let (@;);ey (IN the set of natural numbers) be a base of
E and let E;={p|pek* o@)=0 +=0,1,2, --+,5—1. Let
a;€ E* be such that aj(e;) =1, aj(a,) = 0 if 7 = k. Then clearly a),
a;, -+ aj_, generate a supplement of E; in E*. For each x € E the can-
onical image of = in E** annihilates some E; and conversely if e E**
annihilates E; then + is the canonical image of 3};—.,....i—1 Yv(a}at,
Hence E — E** is a surjection if and only if each € E** annihilates
some E;. If E— E** is not a surjection let e E** be such that
y(E;) # 0 for each je N and let @;€ E; be such that (®;) = 0. We
can suppose that @;e II'E; and that (@) [I™4 but (p;) ¢ I™*A
where m;, > m; for all 1€ N. To show A complete it suffices to show
that every series > ey B;1I™, B;€ A converges. We can find a sealar
multiple of @; say @ such that (@)} = B;[I7. Then let o€ E* be
such that @(x) = Jjey @i(x) for all xe E. This sum is defined since
for a fixed x€ E and M sufficiently large positive integer we have
Py+i(x) = 0 for all e N. Furthermore, since ¢;e II'E; it is clear that
the series > @; converges to ® when E* is given the topology having
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the submodules /I"E*, ne N as a fundamental system of neighborhoods
of 0. Under this topology ++: E* — A is continuous. Hence

S ) = 36017

converges to ¥ (p). Thus A is complete.

Conversely if A is complete let (a});e» as defined above be a sub-
family of the family (¢)iex,, Ni D N where (a; + [1E*);ey, is a base
of the A/Il A module E*/Il E*. Then if E' is the submodule of E*
generated by the family (ai).ey, it is easy to see that E’ is free with
base (a{)icy, and that E’ is a dense pure submodule of E*, i.e. E*/E’
is divisible and torsion free. Then, since A is complete the map E** —
E'* which maps an element of E** onto its restriction to E’ is a
bijection. But this clearly implies the existence of a € E** such
that +(a;) = 0 for all 1€ N, and hence for all 1€ N. Thus E— E**
is not a surjection.

COROLLARY. If A is an integral domain with a prime I such
that the discrete valuation ring A, is not complete then free A-modules
with denumerable bases are reflexive.

Proof. There exist canonical injections of K, E* and E** in E,,
E*, and E}* and furthermore if for x€ £, @c E*, and € E** we
let Z, #, and ++ denote the image of «, @, and + in E,, EF, and E**
then @(x) = @(x) and (@) = ¥(®). Then if (a,);ey is a base of E,
{@;);ey 18 a base of E, and if (a));cy is defined as above we get @i(@;) = 1,
ai(@;) =0 if © #j. Then if ¥ € E** ig such that ¢(E;) = 0 for each
J then + is not in the image E, under the canonical homomorphism
gince J((E,);) # 0 where E; and (E,); are defined as above.

THEOREM 2. If A is a left Noethrian hereditary ring, then a
left A module E is reflexive 1f and only +f E is complete when
endowed with the topology having the finite intersections of the kernels
of the linear forms as a fundamental system neighborhoods of 0.

Proof. Clearly E is separated with the topology described in the
theorem if and only if the map E— E** is an injection hence we
suppose that E is separated. For each finite subset X of E* consider
the subset X° of E** consisting of all 4 € E** such that (X) = 0.
Let E** be endowed with the topology having the submodules X° as
a fundamental system of neighborhoods of 0 where X ranges through
all finite subsets of E*, Then it is immediate that E** is complete
with this topology. If we can establish that the canonical map E —
E** maps FE isomorphically onto a dense subset of E** then it will
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follow immediately that E is complete if and only if E is reflexive.

Let X be a finite subset of E*. Then clearly the intersection of
the kernels of the elements in X is mapped onto the intersection of
X° with the canonical image of E in E** hence E is mapped isomor-
phically onto a subset of E**. Thus it only remains to prove that
the image of Ein E** igsdense in E**. If vy € E** and X = {®,, Py, *++ @,}
is a finite set of elements of E* consider the map E— [[;o,.... 4;
such that x — (®,(x));=,...,., where A; = A,. Since A is left hereditary
the kernel of this map E, = Ni-y..... ?7%(0) is a direct summand of
E so let E = E, + E, (direct). Then since A is left Noetherian E, is
a finitely generated projective module so it is relfexive. Now E* =
E? + EP (direct) and E** = EP° + EP° (direct). Clearly EP° is
isomorphic to E,;* and the restriction of the canonical homomorphism
FE — E** maps FE, isomorphically onto Ep°. If + = 4, + 4, where
4, € E°° let x e E, be such that « — 4, under the map E— E**, Then
since - — A€ EP° and since X = {p, @, +--, .} T E° we get
A — 4, € X°, This completes the proof.
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