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In this paper we present a generalization of parallel vector fields
in a Riemannian space. As it turns out, such fields exist in spaces of

constant positive curvature.
Restricting ourselves to a Riemannian 3-space throughout, we need
the oriented third-order tensor [3, p. 249]

Niin = [sgn(9)g]"%eis -

whose covariant derivative vanishes [3, pp. 2561-252]. The latter fact
is best ascertained by the use of geodesic coordinates. If we write
the determinant of the metric tensor with the aid of permutation
symbols we also find without difficulty

(1) 9" Yi5oMkene = Ini9ix — Inidin -

DEFINITION. Let the direction of a wvector field at any point be
that of the wnit vector V. The field is said to consist of Clifford
vectors if

(2) ' Vi,j:Lnithh, L:/:O.
THEOREM. If the Riemannian curvature K is constant and equal

to L?, the system of equations (2) is completely integrable. If, at
any point, solutions of (2) exist in all directions, then K = L* = const.

It is known that integrability conditions for (2) are obtained using
covariant differentiation. Hence, on account of a Ricci identity [3,
p. 83] and (1) we have

(3) L0y VY — L VP 4+ LX9390 — 919:5) V= Ry V.
If the Riemannian curvature is constant [3, p. 112],
(4) Ry = K(94i9ix — 91:9:5)

and conditions (3) are identically satisfied. This proves the first part
of our theorem.
For proof of the second part we multiply (8) by W:V?/W* and get

L9490 — 9u8:)) VW VIWF = R,;;,, VW VIW*,
Thus L’ is the Riemannian curvature associated with the unit vectors
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V, W [3, p. 95]. Assume now that W is a solution of (2) and M the
corresponding scalar factor. Then the above curvature is also equal
to M? Continuing this process we conclude from Schur’s theorem
[3, p. 112] that the curvature is constant and because of (4) that K= L.

To conclude, we demonstrate a geometric property of Clifford
vectors justifying the name chosen for them. Let # be the unit tangent
to a geodesic and U a unit vector which undergoes a parallel displace-
ment along the geodesic. Hence U’ ;t' = 0 and U remains in a plane
passing through the geodesic [1, p. 161]. On the other hand, because
of (2), V. tt =0 which shows that a Clifford vector, propagaged
along the geodesic, is inclined at a constant angle to it. Letting
cosd = UV, we see that

—sinéd,0 = Ly, Ut V",

We now make the simplifying assumption that both U and V are
perpendicular to £. In this case the vector 7,;,U*V* has the direction
of ¢t and using (1) we find its length to be sin 4. Thus d,6 = + L
and the Clifford vector rotates about the gecdesic in either sense through
an angle proportional to the displacement. This property may be used
to define the Clifford parallels or paratactic lines in elliptic 3-space [2,
p. 108].
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