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1. Introduction. In a series of recent papers [1-4] I have dis-
cussed various properties and inversion theorems ete. for the transform

_ _I'B+n+1
@D F(x)'l“(a+6+77+1)

x Cawpbg + 0+ 1 a+ 847+ 1 —wfey
where f(y) € L(0, ), 8= 0, 7 > 0.
Fo) = A\ @u?F @, F @)dy

where, for convenience, we denote I'(8 + % + 1)/ + B + 1+ 1) by
A and Fya;b; —2y) by F(x,%), « and b standing respectively for
B+7+1and a+a. For a =L =0 (1.1) reduces to the well known
Laplace Transform

1.2) F@ = |Te=r@dy .

The transform (1.1), which may be called a generalization of Laplace
Transform, arises when we apply Kober’s [5] operators of Fractional
Integration [6] to xzfe~,

The object of the present paper is to give a generalization of
Stieltjes Transform, to give an inversion theorem for it and to use
that inversion theorem to obtain an inversion theorem for the transform
(1.1). In another paper (to appear elsewhere) I have found out inver-
sion operators directly for (1.1).

2. Generalized Stieltjes transform. We prove

THEOREM 2.1. If
(2.1) 6(s) = S:e“”F(x)dx

where F(x) is given by the convergent integral (1.1), then

0

@2) o) =2LELD(Y V(o 64150 — L) rapay
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970 J. M. C. JOSHI
provided that 8= 0, 7 > 0 and f(y) € L(0, ).
Proof. We have
6(s) = Al eds | (@yPFi(a; b; — o)f W)y
= AS:y“’f (y)dyS:w“e‘”l (a; b; — ay)dw

on changing the order of integration, which is easily seen to be
justified under the conditions stated, since [7, page 59]

SRS & () N . e
Fi(a; b; — ) To - a) =1 + Of| = )~} (x )

and
Fi(a; b; — x) = 0(1) (x—0).

Therefore [7, page 43]

o) = ALEED (LY F(a, 6 + 16 — L) sy

0

under the conditions stated.

COROLLARY 2.1(a). When B8 =0, n=2m, a = —m — k + (1/2),
&(s) reduces to the generalization of Stieltjes Transform
Ir'2m + 1)

(2.3) #(s) = F(fm . %)

X lS“’F<2m +1,1;m—Fk + E; ———y—)f(y)dy
s Jo 2 s

introduced by Varma [8]

COROLLARY 2.1(b). When a =8 =0, then ¢(s) reduces to the
well known Stieltjes Transform [9, page 323]

@4 56) = |6+ vy .

COROLLARY 2.1(c). When =0, a= —n=1— 0, ¢(s) reduces
to another generalization of Stieltjes Transform [9, page 328]

s (" fw)
(2.5) 1) = = = g L0y
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3. Generalized Stieltjes transform as convolution transform. In
this section we will find out an inversion operator for the generalized
Stieltjes Transform (2.2) by putting it into the form of Convolution

Transform. The Convolution Transform with kernel G(x) of the
function ¢(x) into f(x) is defined as [10, page 4]

3.1 F(@) = S;G(oc — t)e(t)dt .

The corresponding inversion function E(x), which serves to invert
the transform, is defined by the equation

E@1 = | cwedy .
If ¢(s) be defined as in (2.2), we have
~¢(s) = AELD ["p(a, 5+ 255 ~ L)su)s @)y

s@—f—Z

because, by Euler’s theorem on homogeneous functions,
O[(£)™ 16— 4]
s(El() " Flass b2
— N[\ .._1)]
=g (G) " Flesrnn-4

or
G (e v an - )]
(e - 2]
and
(:—y)[yf’“F (¢, 8+ 1;b;9)] = y*F(a, B+ 2; b; 9) .
Therefore
—e'¢'(e’) = AI'(B + 1)316““‘“‘“”F(a, B + 2;b; e )f(e")dy

or

oo
—o0

§) = ALB + D] e F (@, 6+ 22 e )W)y

where
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&(s) = —e'¢'(e’)
and
&) = f(e) .
Therefore the inversion function E(x) is given by the equation

_i_ — “ ~ (B+2+1 s he —_ p—Y
= ATE 1)S_We \F(a, B + 2 b; — ey
I — o6+ o+ DI — o)
I'a+n—2x)

provided that
b+0,—1, —2, -+, Re(1 —x) >0, Re() — ) > 0
and
Re(B+ 2 +1)>0

since [11, page T79]

e e _ (@) (a + 8)I'(b + 8)I'(—s)
So e F (e, b 6 — 2)dz T @I GIT@ + 5)

if
Res < 0, Re(a + 8) > 0, Re(b +s8) > 0,

and d = 0 or a negative integer.
Therefore,

E(D)Es)} = L(s)
or

I'(e+7— D) e s a4
FErixDra—pl cren=re, D=

and we shall give definite meaning to the operations involved. Now

1 T e T _x
f(l_x)“},lfﬂng(l k)
and
ra+9—2 _ iy 2" qO=7-kHD+B+1+k

TO—mI@B +a+1) w=I(n+2)i D—a—7—k)

Also we have [10, page 66]
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i —'D—’ e * :-(_—_)n;l_fw n—1f p%
kI=II(1 k>[eF(6)] ('”/—‘1)!6 F¢ (e)
and
Iﬁ[o (D' + a + k)[e= @2 F(¢?)] = e~ @V F *+)(¢?)

(D' + a — k)[e®F(¢)] = ¢+-07 F #(g)

0

s s

(DI + o — k)—l[e(n+1—-a)xF(ex)] — e-—-a::F(-—n—-l)(ea;)

e
i

0

where F'“""(x) denotes a function y(x) such that

d n+1 , d
(&) W@ =Fe, D=2

Using the above relations,

E(D){—e¢'(e')}

= (____ )nnw——ﬁe(w+n)le—n—-le-—wsDin+1e— (n+B)s

x Dyvlemtsiige) = f(e), D

Il

'dies'y (’}’L—-)OO) .

Returning to original variables, we have.

(3.2) lim (—)— L + @)
nmee (0 A B)[ () (0 + 2)

X S W+UD~—7L—1S—WD7L+IS— (ﬂ-FB)D"L+1S2n+B+1é (n)(s) .

We thus have.

THEOREM 3.1. f(s)eC:B on 0 < s < o and if the integral (2.2)1
converges, then (3.2) holds for s > 0.

COROLLARY 3.1(a). When 8=0, a=—m —k+ (1/2), 7=2m
we have the corresponding result for Varma’s Transform.

COROLLARY 3.1(b). When a =L =0 we have the Theorem 9.4
of Hirschman and Widder [10, page 69].

COROLLARY 3.1(c). Similarly for a = —)=1—o0 and 8 =0 we
have a theorem for (2.5).

4. Application. to generalized Laplace transform. We may now
use inversion formula derived above to obtain a new inversion of
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the Generalized Laplace Transform (1.1). For we have, as above
o 8
wn o) = ALCEDF(L Y plap + 150~ L)raay .
s o\'s s
Therefore if we invert the integral (4.1) we get f(y). But
#s) = | e Flayda .
Therefore
¢(n—1)(s) — (_)n—lsme—sxxn—lF(x)dx
0
_ (=) — S e~ Vg1
- 8™ y F( >dy

by a simple change of variable. But the repeated use of the theorem

Gl (2= -Gl (2]

gives
@) Lt (2] = G T ()]
Therefore,
Drginti-lph-l(g) = (--)"'g ‘1+f’g e**D"[xfF (x)]|dx .
Similarly,

Dns— (vl+ﬁ)Dns2n+ﬂ—1¢ (n—1) (S)
= (-y| s s @)
0

where, for convenience, we write
fi(@) = gt DB DIn(B F(x0))
Then
D= Drng=n+8) Dugin+f-1gn-1)(g)
= gme“"”s”‘l(sn)””"““lD’“”{w”"‘“‘"fl(x)}dx

0

Therefore finally we have,
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lim (—)” I'n — 1+ «a)
o0 I'n—1+8)10(n+ DI"(n—1)
X sw+77D—ns—ans—(v;+B)Dn82n+B——1¢(n—1)(s)
— lim (=) I'n —1+4+ a)
e I'n—1+8)10(n+ 1[I (n—1)

X S me—sxsn—lx~n~w—D’—nxw
0

X D'rgrréti DinfeB F(x)ide = f(s) -+« (A) .
We have thus proved

THEOREM 4.1. If f(x)e L in 0<ax < and tf F(x) is definea
by the convergent integral (1.1) then the result (A) holds for almost
all positive values of s.

COROLLARY 4.1. When aa =8 =0 we have Theorem 25(a) of
Widder |9, page 385].

I am indebted to Dr. K. M. Saksena for guidance and help in
the preparation of the paper.
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