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1. Introduction. In a series of recent papers I have discussed
various properties and inversion theorems ete. for the transform

T+ n+1) (=, .4 _
Fle) = Fy 1;
(1.1) @ Te+B8+7+1 SG (@y)P (B + 7 +

a+B+n+1; —xy)fdy .

‘where f(y) e L0, »), 8= 0,7 > 0.
= Al @rie v sy

‘where for convenience we denote I'(B 47 + 1)/I(«¢ + B8+ 7+ 1) by
A and Fi(a; b; —xy) by 4(xy); a and b standing respectively for 8 +
7+ 1 and a +a. For a =8 =0 (1.1) reduces to the wellknown
Laplace transform

(L.2) F@) = | ey .

'The transform (1.1), which may be called a generalization of the
Laplace transform, arises if we apply Kober’s operators of fractional
integration [2] to the function xPe~*[1].

The object of the present paper is to obtain an inversion and a
representation theorem for the transform (1.1) by using properties of
Kober’s operators defined below.

2. Definition of operations. The operators given by Kober are
defined as follows.

Ll f @) = o™ o wrw s
el f@) = 5o | (u — oy ousof idu

where f(zx)e L, (0, ), 1/p+1/g =1, if 1 <p <o and 1/p or 1/g 0
if D or q:17 a > 07 Z: > _(E/p% n> —(1/(1)'

The Mellin transform Mf(x) of a function f(x) € L,(0, o) is defined
as
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() = S: F(@)cidu (=1)
and
=Tim sy ran »>1).

The inverse Mellin transform M ~¢(t) of a function ¢(¢) € L(— oo, )
is defined by

@.1) M-g(t) = -1—5” B(tya—dt (@=1)
27 J-e
and
_ 1 lngexp T —it—1p
= — lim B(t)x dt @>1.
2T T J-r

If Mellin transform is applied to Kober’s operators and the orders
of integrations are interchanged we obtain, under certain conditions

r(n+L—at)

_— _ q _
MA{L of (%)} B (a - {7] . _;_ -—it}] Mf ()

and
i r(s + —;— +it)
M{K:.f (@)} = F[a ) <z: n %+ 1,75)] Mf() .
But

H(e~ - af) = g:e*"x“““”"dx - r(B + it + %) , i Re(p + %)>0 :

Therefore
r[(n + % - it)]F(B + % + it)

r[a + {7; + -{11— ~it}]

M{I;w(xﬁe—z)} =

and
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[‘(,8+'£t+ %>P<§‘+it+ 1)

F[a + {; + —;;——l— it}] :

M{Kz(2Pe~)} =

By (2.1) we then have

rlp+ L —at)r(s+ L +ir)
2.2) Iiuare) = 1| a b it-ila gy
. ) 7,0\ € o S——w F[C( N <77 + % B %t>] &
and
koo L[ e+ % +it)r (8 + % +it) .
o on )= F[a + <§ + % + zt)] ’

provided that 1/p > 0,7 + 1/¢ > 0 and ¢ + 1/p > 0.

3. Inversion theorem. We now define an inversion operator which
will serve to invert (1.1).
An operator is defined for integral values of n by the relations

WlG(x)] = G(x) ,
WIG@) = (—rne= (LYo Gw), (n = 1,2, -+ )

1
I'mn+1+8—«

Qn,t[G(w)] = ) [an[G(x)]]n=n/t(/n =12, - ') .

THEOREM 3.1. If f(t) is bounded in (0 <t < o) then, provided
that the integral (1.1) converges, n >0, 8= 0

@) = lim Q, [F@)]
for almost all positive t.

Proof. Let x be any number greater than zero. Then, since the
integral (1.1) converges, we can differentiate under the integral sign.
Also (2.2) gives
(3.1) (%)[x“ﬁn,w(xﬁe‘*)] =—a B, Jafe?] .

Using this relation we get
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WAF@] = (=ynee "oy L f@y)e ) )dy

__I'B+n+n+1 S
Ma+B+7+mn+1)

a+B+n+n+1—ay)flydy.

CYPF(B + )+ m 1

0

Therefore
Q. {F(2)}
__I'+7+1 <_n_>5+”“ 1
Na+B+n+1)\t I'm+B+1—a)

X S:yf’*”lFl(n +B8+n+La+B+0+1+n; —ay)f(y)dy

_ 1 <ﬁ>ﬁ+n+1 F(a)
I'n+B+1—a)\t I'(b)

X S:y‘“”lFl(a + n; b 4+ n; —ay) f(y)dy

in the notation of §1.

_ F((l + ’i’b) (£>W+B+1
Iro6+nl'n+pB+1—a)

t
% r(tv)”“ﬁlFl(a b+ m; —no)f(to)dt
0

_ F(a + n) (ﬁ>n+ﬁ+1
IrG¢+n)yln+B+1—a)\t

X g:v””“ﬁllf"l(,@ +74+n+La+B4+7%+n+1; —nv)fEv)dt

by a simple change of variable. Now by using a result of Slater [4]
we have

I'(a + n)

———— F ;b y TV~ abem - .
T4+ ) (@ + n; b + n; —v) ~ (nv)* e (n — o)

Therefore

lim Q, {F(n)} = lim Lo S

* n-+B—a ,—nv t d .
ne (04 B+ 1—a) Y ALY

0

But [3] we have for almost all positive ¢

,n5+fn+1—-w Soo

}irg IO g Y e f(ty) — f(t)dy = 0

0

and so we have our theorem.
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5. Representation theorem. In this section we propose to give

a set of necessary and sufficient conditions for the representation of a

function as an integral of the form (1.1). We shall need a lemma
which we now prove.

LEMMA 4.1. If n is a positive integer and x and t are positive
variables then

0\ ,64n— 2\ .l wm” 2\f _,
() [ e (5) o} = s T {(5)e "}

Proof. It is plain that

Grnd(3) o)

is a homogeneous function of zero order. Therefore applying Euler’s
theorem we get

O AR (RS ORI
t(at x) I”’“<t>6 +"<ax> <q;> I”"”<t ¢ =0
or
i EBtn—1 x \8 —x/t} o 0 [tﬁ+n—2 { 2 \P ~x/t}]
<6t >[ Bt IW{<7> ¢ o <b—x> P+l Ty <—t—> ¢
or
il bl (5) 7 = g L Ll () e}
— | T A= It — 7 R e z/t
ot L g (t> ¢ e el t> ¢
N E
h (ax>[0t { gt IW{(?) ¢
_ , 0* [ tBtn—3 2\P a
= g bl (5) e}
Proceeding in the same manner we have
o [ Pt AL I 2\ .
ot" [ ab+r I”"”{<—t'> ¢ “}]” P I”*”’“{(T>e lt}]

using (3.1).

THEOREM 4.1. The mnecessary and sufficient conditions that a
given function F(x) may have the representation (1.1) with f(y)
bounded and Ren > 0 ReS = 0 are that
(i) F(x) has derivatives of all orders in 0 < x < oo,
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(ii) F(x) tends to zero as « tends to imfinity and
(iii) | Q. {F (@)} | < M for all integral n (0 <t < o).

Proof. First let us suppose that F'(x) has the representation (1.1).
Under the conditions of the theorem it is obvious that all the derivatives
of F(x) exist. Also

, I'G+7n+1)
Fa)s M
(@) = I'a+B+7+1)

x| "@yp R+ 7+ L at B4y + 1~y

__Mrore +1)
x(a + 1)

since f(y) is bounded. So F'(x) tends to zero as x tends to infinity.
To prove the necessity of (iii) we see, as in Theorem 3.1, that

| QudF @} = {

nB +n+l—w S

In+tB+1—a , ”MMG“Md”}{olub | () 1} =M.

St<oo

To prove the sufficiency let us suppose that the conditions are satisfied..
If we now set

I, = | Lal@re Q. F @)y

we have

I = # el e e

([t J(12) e YL s r g

It will be seen in the course of the arguement that this integral exists..
Integrating by parts we have

5= T +(A; inl @) [tm—lI”’“{(ﬁi&)B e_""'t}(o%)n_l{t—ﬁF(t)}]:

I'(n —ifz): lg — Q) S :(%Y—l{t—BF(t)} (f;it>{tn+ﬂ—11”"’”¢}dt

Il

where

B
= (1) e
t
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Now
L.¢ = 0" t—0)
=01) B=00— )
=01) B> 0t— x)
for [1]

_ I'B+n+1) [(nx\P . . nx
I, ,($) = —) F 1; 1, ——=).
() r<a+,e+v+1).<t> (8+7+La+s+n+r1y -2

Also the hypotheses of the theorem by implications mean that
F(x) = 0(x™)
and in general
F™(x) = 0(@x—™")
and

(&) eer e

={(=)"7BB + 1)+ (B +n— 2t P E({) + - TFF V(D)) .
‘Therefore the integrated part
= [t A F@) + - " F"I(@)}]—0 as t—0.
Also it is
= 0[A,F(t) + ++- tF™ ()] — 0 as t— oo,
‘Therefore the integrated part is zero and integrating by parts again

T e A e () e Eon ]

(rn (DY oy & grse
Tn+ B +1—a) |, (&) ey T L

oo
0

Now

(72_15—>{t5+”_11;1.w¢} = [(n — D)tFT"L, 0 + « o« + m0tP "L 0]

and

CARGIAO)

={(=)7BB +1) -+ (B +n — P F({) + - P}
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Therefore as before the integrated part again approaches zero when ¢
tends to zero and ¢ tends to infinity. Proceeding in the same manner
we obtain

Jn = n ”t—BF t _Qn_ §B+n—1 Y dt
Fn+B+1—a ! ()5 (07D o6}
" s (nx)"
— t BF t tﬁ ) d
F(n + :8 ~+ 1-— C() So ( ) tn+1 IW }—n,w(¢) t

by the Lemma 4.1. Hence

_ B () S‘” —B—n—1 N
I = ) [ Fy(03 b — "2 )F(t)dt .

It is clear that this integral exists under the hypotheses of the theorem
and therefore all the previous integrals exist. By a simple substitution
this gives on using the asymptotic expansion of Fi(a; b; x) [4]

Jn y PRty ntp 5°°u5+n_1e—nmuF(l.>du .
I'(n+B+1—a) b ¢

Let

(1/u)F<-i-> = J(u) .

Now

/) F1/u) = 0(1) (w— o) and F(%) = 0(1) (w—0).

Hence it is easily seen
(i) v(uw)eL (1/R=1 < R) for every R > 1.

(ii) r«/f(u)e‘”“du converges for any fixed ¢ > 0, and
1

(iii) Sluq/r(u)du also converges. Therefore [3]
0

lim 7. = () = Fw

Now if

I'(a) 8
2, Y) = —L (xy)’, Fi(a; b; —xy) .
x(@, ) 70) (xy)P F'( Y)
Then Y(zy)eL in 0 =<y < = under the conditions assumed for the
convergence of (1.1). Therefore by a theorem on weak compactness
of a set of functions [5] the inequalities in the hypothesis (iii) of the
theorem imply the existence of a subset {n,} of the positive integers
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and a bounded function f(y¥) such that

lim | 1Qu AF @@, 9) = |26 1) @)y -

Hence

F@) = | 1@, @y

and the theorem is established.
I am indebted to Dr. K. M. Saksena for guidance and help in the
preparation of the paper.
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