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Let B, be the set of nonnegative real continuous on [0, 1], let B,
be the set of functions belonging to B, such that 4} f(x) = f(x + k) —
fl)y= 0,k >0, for [, + h] <[0,1], and let B,, n > 1 be the set of
functions belonging to B,—, such that 4;f(x) = 0 for [z, x + nh] ][0, 1]
[1]. Since the sum of two functions in B, belongs to B, and since
a nonnegative real multiple of a B, function is a B, function, the set
of B, functions form a convex cone. It is the purpose of this paper
to give the extremal elements [2] of this cone, to prove that they are
not dense in a compact convex set that does not contain the origin but
meets every ray of the cone, and to show that for the functions of
the cone an integral representation in terms of extremal elements is
possible. The intersection of the B, cones is the well-known class of
functions, the absolutely monotonic functions. Thus the set of these
functions form a convex cone also. The extremal elements for this
convex cone are given too.

In some correspondence with the author relative to the convex cone
B,, Professor F. F. Bonsall noted that the extremal elements of B,
were the indefinite integrals of the characteristic functions that are
extremal elements of the weak closure of B,. Professor Bonsall guessed
that successive integration would give the extremal elements of B,. This
proved to be a very good guess, and the author gratefully acknowledges
the assistance of these comments.

In the following discussion the vertex of the convex cone is not
considered as an extremal element.

1. The convex cone B,. For fec B, then take fi(x) = « f(x) and
f: =F — fi. Then f is the sum of functions in B, that are not proportional
to f. Therefore, B, has no extremal elements.

2. The convex cone B,. For f=¢ >0 and f=f, + f. where
fi and f.€ B, then 0= 4, f(x) = 4, f.(x) + 4.f(x) implies 4fi(x) =0
for ¢ =1,2 and [z, + k][0, 1]. Therefore f; =¢;,¢c; >0,1=1,2,
where ¢, + ¢, = ¢. Hence f is an extremal element of B,. Now f =
¢ >0 belongs also to B, for » > 1. The set B, is a subcone of B,
and hence f = ¢ is again an extremal element of B,.

If f is not constant then f(0) = m and f(1) = M and a non-propor-
tional decomposition can be given by taking fi(x) = min (f(x), (1/2XM + m))
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and f, = f — fu.

3. The convex cone B,. The functions of B, are exactly the
non-negative, nondecreasing and convex functions on [0, 1] [5].

Again the positive constant functions are extremal functions. If
f € B, fis not constant and f(0) > 0 then take f; = f(0) and f, = f — f..
In so doing f; and f,€ B, and f; and f; are not proportional to f. Since
this same technique still can be used for B,, n > 2, the only extremal
elements of B, such that f(0) > 0 are the positive constant functions.

If f(x)=0,2¢]0,&] and m(x — &) for xe (&, 1] where 0 < £< 1
and m > 0, then for f = f, + f, it follows that f; and f, are zero where
f is zero and f, and f, are linear where f is linear. Thus £, and f,
are proportional to f and f is therefore extremal.

If f(x) =0,z¢ [07 El]? ml(x - El) for x e (éli ‘Ez], ]

g my(x — &)

for xe€ (&, 1] where 0 < & <& < -+ <&, <1 and m; >0 for ¢ =
1,2, -+, k, for £ > 1 then fe B,. Let fi(x) =0, for x€]0, &], fi(x) =
my(x — &) for (£, 1] and f, = f — fi.. Then f; and f,€ B, and both are
not proportional to f.

Finally, if f is not any of the above functions, but f belongs to
B, let &, = inf {x: f(x) > 0}. Then 0 <& < 1. On [§,1], f is convex,
f(&) = 0 and f(1) is finite. Furthermore, the right-hand derivative at
&, fi(&) is finite and in [£,, 1] £/, the left-hand derivative, must take
on more than a finite number of values since f is not polygonal on
[€, 1]. Thus there exist &, & < & =1 such that on [&, &] f] is not
piecewise linear on three or more non-overlapping segments whose
union is [£, &] and f'(&) is finite. By Lemma 4 of a paper by the
author [4], there exist convex, nonnegative and nondecreasing funections
fiand f, different from f on [&, &] such that f; and f, have the same
values and the same derivatives at the end-points as f and f = af, +
(1 — a)f, for some a,0 < @ < 1. Thus define f; and f, equal to f on
the complement of [£,, &,] relative to [0, 1] and then af; and (1 — a)f,
belong to B, and both are not proportional to f.

Thus the extremal elements of B, are positive constant functions
and those f such that f(x) = 0, x €[0, £] and f(x) = m(x — &) for x € [£, 1]
where 0 < £ <1 and m > 0. Designate this latter function by f(¢, 1;)
for m = 1.

4. The convex cone B,, n > 2. The function f, such that f(z) =
0,x€0, ], fw) =m(x — &) ", wel[§,1,0 =& <1 and m >0, that is
m f(&, n — 1;) belongs to B, and is an extremal element of B,.
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Already m f(§, 1;) belongs to B,., Now by induction it shall be
shown that m f(&, » — 1;) € B, for n > 2. In fact, it is true in general
that if fe B,_, and if

F@) = | ftydt,

then Fe B, For if 4if(x) =0 for k=0, -+, n — 1 then

z+h

4F @) = 4|7 f0 dt = 457 @) > 0
where t < &<« —h and k=0, -+--,n. Thus since
mfEn—130) = (0~ Dmfe,n— 2 t)dt

and since by the induction hypothesis (n — 2)m f(¢, n — 2;)€ B,,, it
follows that m f(¢,n — 1;) € B,.

Similarly, by induction it shall be shown that f = m f(§, — 1;) is
an extremal element of B, It has already been shown that m f(§, 1;)
is an extremal element of B,_, for any m > 0 and for 0 < £ < 1. Now
let f=mf(&n—1;)=f, +f, where f, and f, belong to B,. For
n > 2, functions in B, have derivatives, f/ and f, on [0, 1) (See [5]
Chapter IV) and the functions f/ and f;, belong to B,_, on [0,d] for
any 0,0< 0 < 1. Take 6 <1 such that £ < 4, then by the induction
hypothesis it follows that f{ and f, are proportional to f' = (n — )m
S, m—2;) on [0,0]. Hence fi(x)=N\;f(x)+ ¢;,2xec[0,5],0=>x,
where ¢; is a constant for 7 =1,2. Since fi(0) = f0) =n — 1)m
f(€,n — 2;0) =0 it follows that ¢, =0,7=1,2 and hence f;, and f;,
are proportional to f on [0, ] for any J,0 < d < 1. However, since
f, fi1 and f, are continuous on [0, 1], it follows then that f, and f, are
proportional to f on [0, 1]. Therefore, m f(&,n — 1;) is an extremal
element of B,.

Notice that like the positive constant functions these functions
m f(&, n — 1;) for ¢ = 0, that is the functions m f(0, n — 1;) belong to
B, for all n since its derivatives of all orders exist and are nonnegative
on [0,1]. However, if £ > 0, let s and k be integers such that s >k
and let « and 2 be such that  + (s —2h=¢§, 0= <x+sh =1.
Then

im f(&, k; ©) = m[(2h)* — s(h)*] = mh*(2* — s) .

Hence, if s > 2%, then the expression on the right is negative and thus
m f(&, k;) ¢ B,. This means that whereas m f(¢§, n — 1;) € B, it does not
belong to B; for j > 2,

It remains only to show that the functions of B, other than the
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positive constant functions of the form m f(§, k;), 0 <£<1,m >0,
k=1,2,.-.-,n — 1 that belong to B, are not extremal elements of B,.

It is known that f’ exists and is a continuous funection on [0, 1).
If ' can be extended to be a continuous function on [0, 1], that is, if
lim f'(x) as * — 1~ exists and is finite, then f'e B,_,. By assuming
the induction hypothesis on 7, there exist functions g, and g, belonging
to B,_; such that /' = ¢, + ¢, and g, and g, are not proportional to f’.
Let fi(x) = S gt)dt, 7 =1,2. Thus f, and f, belong to B, and they

0
are not proportional to f. For if f; = N f, M\ = 0, then f{ = N f' = ¢..
This clearly violates what is known about g,. Hence such a function
f is not an extremal element of B,.

Finally, suppose that fe B, and lim f'(x) = +w as £ —1-. Then
the following must be true: f/, f”, «+-, f*® and f{*, the right-hand
derivative of £~ are defined on [0, 1); each of them approaches -+ o
as & approaches one from the left; and 4 f9(@x)=0 for 0 =2 <1,
7=12, — 1, (with the special understanding for j = n - 1),
k=01, 2 ,% — J. Denote by B,_;0,1) the set of real functions

¢ of [0,1)A ¢(w)20,0§w<1,k=0,1, e ,m—g for y=1,2, -,
7 — 1 such that ¢é(x) — +o as £ —1~, The functions B,_;[0, 1) form
a convex cone and f e B, ;[0,1) forj =1, .-+, — 1. By an argument
similar to the one given earlier, the indefinite integral of a function
F in B,[0, 1) belongs to B,.,[0, 1) if S F(t)dt — + 0 as @ —1-. Also

0
if g, 9, and g,€ B,[0,1),9 = g, + ¢:, and ¢, and g, are not proportional
to g, then the indefinite integrals of g, and g, are not proportional to g.
1—
Not that if g =g, + g, as above and if S S(t) dt is finite, then the
same will be true of S git)dt for 2 =1,2. If the lim g(t) = +oo as
1— 1—
t— 1~ and § 9:(t)dt = + oo then the same will be true of S g.(t)dt
for 7 =1, 2 if there exists constants v; > 0,¢ =1, 2 such that g,(f) =
v; 9(t) for some 0,0 < d < 1. For the case when g () dt is finite
then f; where f;(x) = S g:(t)dt, 7 =1, 2 can be extended into a funection
0

that is continuous on [0, 1]. Hence f; and f, will belong to B,...

Thus the object is to find two functions g, and g, that belong to
BJ0,1), such that f{"*"=g¢,+g¢, ¢, and g, are not proportional to
fi»=b"and such that g;(t) = N\, f"(t),0 <t <1,0 >0. Then f, given
by

filw) = S S S S gi(t) dt dt, -+ dt,_, ,
0 0 0 0

4 =1, 2 belong to B, and give a nonproportional decomposition of f.
The lemma below shows how the functions g, and g, with the desired
properties can be constructed.
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LeEMMA. Given f on [0, 1) such that f is right continuous, mon-
neqative, nondecreasing and f(x)— +co as x—1 . There exist two
Sunctions f, and f, on [0, 1) that are right continuous, nonnegative
and nondecreasing, f = f,+ fi, fi and f, are mot proportional to f,
and fi(x) = v,f(x) on [4,1) for some 0 <6 <1 and v;>0,1=1,2.

Proof. All the discontinuities of f must be jump discontinuities.
If the point © = 1 is an accumulation point of the discontinuities of f,
then there exist ¢, ¢, and ¢, 0 <e¢, < ¢, < ¢, <1 such that f has a
jump of 6; at ¢;, 0, >0,72=1,2,3. Take 6 = (1/2) min (6,6, 0,). Let
J1 be such that fi(x) = (1/2) (flx) — 0), ¢, = & < ¢, fi(%) = (1/2) (f(x) + 6),
=z <c and fi(x) = (1/2) f(x) otherwise. Take f,=f— fi. Then
fi and f, have the required properties.

If the point © = 1 is not an accumulation point of the discontinuities
then there exists J, 0 < 0 < 1 such that f is continuous on [d, 1). Let
& be a point such that f(&) = f(0) + 1, then 0 < &< 1. Take f; such
that fi(z) = 1/2)f(x), 0 <« < & and fi(x) = (1/3) (fx) — f(6) — 1) +
1/2)(fO) +1),é=x<1. Let f,=f— fi. Then again f, and f, have
the required properties.

5. Absolutely monotonic functions. The continuous functions
S on [0,1] such that f®(x)=0 for 0<x<1,k=0,1,2, --- were
called absolutely monotonic functions by Bernstein. These functions
clearly form a convex cone of functions on [0, 1]. Since the functions
f belonging to B,, » > 2, have f*(x) =0,k =0,1, ---, n — 2, it follows
that M., B, is contained in the set of absolutely monotonic functions.
Since the continuous functions f on [0, 1] such that f*(x) =0,k = n
on (0, 1) have 4} f(x) = 0 for k < n, then M-, B, is the set of absolutely
monotonic functions. Denote this set by B.

From the earlier remarks it is clear that ¢, ¢, x, ¢, 2% --- belong to
B, for ¢; >0,7=0,1,2, --- and they are indeed extremal elements
of B.. Since any fe€ B, is absolutely monotonic on [0, 1) it follows that

o

fle) =3, f™0) (@"/nl), 0=a<1.

n=0

Consequently, if as many as two terms are nonzero in the series
expansion, then take f, equal to one of the two nonzero terms and
fo = f — fi. Then clearly f, and f, belong to B., and f has a nonpropor-
tional decomposition. Hence the only extremal elements of B, are the
functions ¢; 2%, ¢; >0,7=0,1,2, ---.

The following theorem summarizes all of the results up to this
point.

THEOREM. The convex cone B, has mo extremal elements. The
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Sunctions f = ¢ > 0, where ¢ 1s a constant, are extremal elements of
B,n=1,2,8,---. The function mf(é,n — 1;2) =0 for 0 Zx <&
and m(x — &))" foréE = =1,m>0,0<¢&<1are extremal elements
of B,,n=2,8,---. The only other extremal elements of B,, n =
2,8, «+- are those functions m f(&, k;), k=1,2, -+, n — 2 that belong
to B,. The extremal elements of the convex cone B., the absolutely
monotonic functions, are the functions of the form c;x',c; > 0,1t =
0,12 -,

6. Integral representations. The set of functions B, — B,,n =
1, form a linear space containing the convex cone B,. Using the
topology of simple convergence B, — B, becomes a locally convex space.
Let C, be the set of functions f of B, such that f(1) =1. Clearly,
C, meets every ray of C, once and only once and does not meet the
origin in B, — B,, that is the zero function. Furthermore, C, is convex.
Each function f of C, is such that 0 < f(x) <1 for all 0 < 2 < 1 since
f is nonnegative and nondecreasing. It follows by use of the Tychonoff
theorem that C, is contained in a compact set in B, — B,, namely
{f:feB,— B, 0=f(x)=1,0 =2« =<1}. Thus C, is compact, if it can
be shown that C, is closed. This will be done by showing the complement

of C, is open.
If ge B,\C, then g(1) # 1. The set

V(l;) +9={f:feB,— B, [f(1) —9(1)| < ¢}

where ¢ = (1/2) |1 — ¢g(1) | is an open set about g that fails to meet C,.
If g¢ B, then there exists «,, k and & such that 4f g(x,) =6 < 0. Now

A gy = 3 (17 (B ) g+ 6 = ) 1.

Consider

V=V, ® + h, +++, 2, + kh;e) + g
:{f:feBn_Bmlf(x0+jh)—g(xo+jh)[<s7-7:011’ ""k}-

where ¢ = 2=%*(—4). Then V does not meet C, since for if fe V

¥ f()) = di(f(@o) — 9(0)) + dig(w,)
< [ 4i(f(@) — g(®@)) | + 4ig(y)

<35 (5) 1@+ e — i) — at@y + G — )| + 0
<e§o(;§)+b‘

=e2 4+ 0
=(1/2)6<0,
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Hence f¢ B,.
Thus by Theorem 39.4 of Choquet [3], it follows that for any
function f, in C, there exists a nonnegative measure ft, on the closure

of the extreme points of C, such that fy(x) S du, = S f(x) dyt,.  Since

C, meets every ray of the cone B, and does not contain the origin,
it follows that each function of B, is a scalar multiple of such a
representation.

If the set of extremal elements of C, are dense in C,, then the
above result would be of no interest, but this is not the case. Consider
go(x) = (1/2) + 22 f(1/2, » — 1; ). Then g, belongs to B, since it is
the sum of two functions in B,. Notice further that g,1) =1 and
hence g,€ C,. The neighborhood of g¢,,

Vo= V(0, 1;1/8) + g,
={f:feB, — B, | f(?) — q(1) | < (1/8),2 = 0,1},

does not meet any extreme point of C,. Any positive constant function
of C, is f(x) = 1 for all  and hence f(0) > 5/8 at « = 0. Any function
of the form m f(&, k;) that belongs to zero at # = 0 and hence does
not belong to V,.

7. Remarks. Choquet [3] discusses convex cones of functions
related to the cones discussed here. The main difference is that the
differences, 4} f(x), alternate in sign as k& takes on successive integral
values in the cones that Choquet considered.

REFERENCES

1. F. F. Bonsall, Semi-algebras of continuous functions, Proceedings of the International
Symposium on Linear Spaces, (1961), 101-114.,

2. N. Bourbaki, Espaces vectoriels topologiques, Act. Sci. Ind. no. 1189, Paris, 1953.

3. G. Choquet, Theory of capacities, Annales de V'Institut Fourier, 5 (1953 and 1954),
131-2¢6.

4. E. K. McLachlan, Extremal elements of the convex cone of semi-norms, Pacifie J.
Math., 13 (1963), 1335-1342.

5. D. V. Widder, The Laplace transform, Princeton Mathematics Series, 6 (1946).

OKLAHOMA STATE UNIVERSITY






PACIFIC JOURNAL OF MATHEMATICS

EDITORS
RoBERT OSSERMAN J. Ducunbpi1
Stanford University University of Southern California
Stanford, California Los Angeles 7, California
M. G. ARSOVE LoweLL J. Paice
University of Washington University of California
Seattle 5, Washington Los Angeles 24, California

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WoLr K. Yosipa

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA STANFORD UNIVERSITY

CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF TOKYO

UNIVERSITY OF CALIFORNIA UNIVERSITY OF UTAH

MONTANA STATE UNIVERSITY WASHINGTON STATE UNIVERSITY
UNIVERSITY OF NEVADA UNIVERSITY OF WASHINGTON

NEW MEXICO STATE UNIVERSITY * * *

OREGON STATE UNIVERSITY AMERICAN MATHEMATICAL SOCIETY
UNIVERSITY OF OREGON CALIFORNIA RESEARCH CORPORATION
OSAKA UNIVERSITY SPACE TECHNOLOGY LABORATORIES
UNIVERSITY OF SOUTHERN CALIFORNIA NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the Pacific Journal of Mathematics should
by typewritten (double spaced), and on submission, must be accompanied by a separate author’s
résumé. Manuscripts may be sent to any one of the four editors. All other communications to
the editors should be addressed to the managing editor, L. J. Paige at the University of California,
Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be
obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and
December. Effective with Volume 13 the price per volume (4 numbers) is $18.00; single issues, $5.00.
Special price for current issues to individual faculty members of supporting institutions and to
individual members of the American Mathematical Society: $8.00 per volume; single issues $2.50.
Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific
Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6,
2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
The Supporting Institutions listed above contribute to the cost of publication of this Journal,
but they are not owners or publishers and have no responsibility for its content or policies.



Pacific Journal of Mathematics
Vol. 14, No. 3 July, 1964

Erik Balslev and Theodore William Gamelin, The essential spectrum of a class of
ordinary differential Operators .......... ... e 755
James Henry Bramble and Lawrence Edward Payne, Bounds for derivatives in
elliptic boundary value problems .. ......... ... ..o uiiiiieiiiiiiiennnnnn. 777

Hugh D. Brunk, Integral inequalities for functions with nondecreasing
ICTEIMEIES o oo oo e e e e ettt e 783

William Edward Christilles, A result concerning integral binary quadratic

JOTIS < o o 795
Peter Crawley and Bjarni Jonsson, Refinements for infinite direct decompositions of

AlGEDYAIC SYSTEMS . . . oo vt e 797
Don Deckard and Carl Mark Pearcy, On continuous matrix-valued functions on a

SIONIAN SPACE . . ..o o 857
Raymond Frank Dickman, Leonard Rubin and P. M. Swingle, Another

characterization of the n-sphere and related results ......................... 871
Edgar Earle Enochs, A note on reflexive modules . ............................... 879
Vladimir Filippenko, On the reflection of harmonic functions and of solutions of the

WAVE CQUATTOTL . . . o oo e e v et e e et e e e et e e e ettt e 883
Derek Joseph Haggard Fuller, Mappings of bounded characteristic into arbitrary

Riemann SUITAcCeS . . . .......o e e e e 895
Curtis M. Fulton, Clfford vectors . ......... ... u it 917

Irving Leonard Glicksberg, Maximal algebras and a theorem of

Kyong Taik Hahn, Minimum problems of Plateau type in the Be

A. Hayes, A representation theory for a class of partially ordere
J. M. C. Joshi, On a generalized Stieltjes trasform ............
J. M. C. Joshi, Inversion and representation theorems for a gene

FANSTOTI . . oo e
Eugene Kay McLachlan, Extremal elements of the convex cone
Robert Alan Melter, Contributions to Boolean geometry of p-ri
James Ronald Retherford, Basic sequences and the Paley-Wiene
Dallas W. Sasser, Quasi-positive operators...................
Oved Shisha, On the structure of infrapolynomials with prescri
Oved Shisha and Gerald Thomas Cargo, On comparable means
Maurice Sion, A characterization of weak®™ convergence.. ... ...
Morton Lincoln Slater and Robert James Thompson, A perman

positive functions on the unit square . . ..................
David A. Smith, On fixed points of automorphisms of classical
Sherman K. Stein, Homogeneous quasigroups................
J. L. Walsh and Oved Shisha, On the location of the zeros of so

with prescribed coefficients ................ i
Ronson Joseph Warne, Homomorphisms of d-simple inverse se

IAEnTity . .o
Roy Westwick, Linear transformations on Grassman spaces . . .



	
	
	

