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1. Introduction. In a paper in this journal [7], J. L. Zemmer
proposed two problems relating to the geometry of the Boolean metric
space of a p-ring. (A p-ring is a ring R in which px =0 and a? =«
for some positive prime p, and all x ¢ B. The axioms of a p-ring im-
ply its commutativity.) The first problem asked for necessary and
sufficient conditions in order that a subset of such a space (hereafter
called a p-space) be a metric basis; the second problem was the deter-
mination of congruence indices for p-spaces, with respect to the class
of Boolean metric spaces. The present paper contains solutions to
these questions as well as a brief discussion of certain properties of
the group of motions of a fp-space, and an introduction to analytic
geometry in a p-space. The reader is referred to Zemmer’s paper for
definitions not contained herein.

2. Metric bases for p-spaces. Let us recall the following defini-
tion.

DeriniTION 2.1. A subset S of a Boolean metric space M is called
a metric basis, if and only if 2,y in M and d(x, s) = d(y, s) for all
se S imply « = y.

Let R be a p-space and B its Boolean ring of idempotents. It is
well known that B is a subdirect sum of GF(2) [6]. Denote by B*
the complete direct sum of these same rings.

Associate with every subset S of R a subset S of B* defined as
follows:

Let S, be the subring of B* consisting of those elements z of
B* having the property

2SN(s— ) (s — k)
sES
for 7,k =0,1,2, ---, 0 —1, 7%~ L.
Let
g: USJ,k[.7<k7 j!kZOf 1’ 2; e, D — 1] .
set

THEOREM 2.1. Let R be a p-space with Boolean ring of idem-
potents B. If S is a subset of R then S is a metric basis for R if
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996 ROBERT A. MELTER
and only if SN B =0, where N indicates set intersection.

Proof. A sequence of lemmas will be established, followed by the
.demonstration of the theorem itself.

LeEMMA 2.2, Let w,s,b,d be elements of a p-ring such that w* =
w, and w S (s — b N (s — d)*, then (s — dw)*™ = (s — bw)?*™".

Proof. By the binomial expansion
(s — dw)r

=" —(p — Ds*dw + b= 1)2'('p =2 gt 4 e drr

="' — (p — 1)s"*dw + P=D®=2) gy oot gy
2
= w(s — d)»" — ws?™t + g7,

Similarly (s — dbw)*™ = w(s — b)*>~* — ws?™* + s*~*. Hence (s — dw)*™* —
(s—bwyr*=wl(s—ad* —(s—5r". ButwsS(s—b*N(s—d)yr?
implies w(s — b)** = w(s — d)>~* = w and hence w[(s — b)*' — (s — d)*'] =
w— w =0, and thus (s — dw)** = (s — bw)*™*, which establishes the
lemma.

LemMMA 2.8. Let x, y, s, f, g be elements of a p-ring such that
(x—spt=W-—9sr and (f— gy =1, then (x — ) (y — 9" &
(s — f)"Ys — g)** where the bar over an tdempotent imdicates its
complement tn the Boolean ring of idempotents.

Proof. Let

a=@—s)" t=(@U-—g "
b=@w—9s" wu=(s—fy"
r=(@—fy" v=(-—9""

and recall that 1 = (f — g)*'. By hypothesis ¢ = b and using the fact
that the mapping « — «*~* is a strong Boolean valuation the following
inequalities are obtained:

aSruu b=aZStUw l1€cuUw
usrua vEbUt=aUt

but 1 &« U v implies © Uv = 1, or equivalently
* U+v+uv=1,

the addition taking place in the Boolean ring of idempotents.
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But then,

l=uUvS7rUaut =1
l=uUvESruturv=1
l=uUvErvutuu=1.

Let ¢=(rUt), then cUu=1 and cUv=1 or ¢c+u+tuc=1
and ¢ + v + cv =1. Adding the two last equalities it follows that
u+v)1+e)=0,(uw+v)L+7r-+t+7rt)=0or(u+v)L+r(l+t)=
0. But by * (u + v) = (1 + uv) so that (1 + wwv)(1 + r)(1 + t) = 0, and
in turn (1 + wv)¥t = 0 or 7tuv = ¥t. Returning to the original sym-
bols, this is equivalent to

(@ —f)r 'y —9 ' s(s— I s—g

which establishes the lemma.

LEMMA 2.4. Let x, y be elements of a p-ring such that
(¢ — y)** % 0. Then elements f, g, can be selected from the summands

of the identity, 0,1,2, ---, p — 1 such that
(i) (f—9r =1, and
(i) (@ —f)y'y—gr*+0.

Proof. From the hypothesis it is clear that x == y. If the p-ring
is considered as a subring of the ring of all functions on a set X
with values in GF'(p), then there is some element ¢, of X such that
x(t,) = y(t,). Let f and g correspond to the funections f(¢t) = x(¢,) for
all te X and ¢(t) = y(t,) for all te X. It will be shown that f and
g satisfy the conditions set forth by the conclusion of the lemma.
Clearly f and g are distinct for every ¢, and hence (f — g)*" = 1.
But (x — f)(&) = (¥ — 9)(t) = 0, so that (x — f)"7(t) = (¥ — 9)"7'(t,) =
1, and (x — f)"*(y — 9)"" + 0.

Proof of Theorem 2.1.

Necessity. Suppose S is a metric basis and SN B>w #= 0. Then
w is an element of some S,,, say S,,. Consider bw and dw. Since
b and d are distinct and at least one is a unit in the p-ring, bw #= dw.
But then by Lemma 2.2 (s — dw)** = (s — bw)*?, that is bw and dw
have the same distances from every element of S contradicting the
assertion that S was a metric basis.

Su fficiency. Suppose SN B =0 and S is not a metric basis. Then
there are elements «, y, of R such that d(zx, s) = d(y, s) for all se S,
and ¢ # y. By Lemma 2.4 there are summands of the identity f, g,
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such that

(f—or'=1 and @/ u—9" =0,
But by Lemma 2.3

@—fry—9=ws(s—f)r's—gr?

for all se S, that is we S;, or weS, so that 0 we SN B. This
contradiction terminates the proof of Theorem 2.1.

An examination of the proof of Theorem 2.1 reveals that the role
played by the set of summands of the identity can be taken by any
equilateral p-tuple with side 1. Further, if SN B = 0 with respect to
a given equilateral p-tuple with side 1, then SN B =0 with respect
to every equilateral p-tuple with side 1.

A restatement of the theorem can be given which exposes its
content of a metric characterization of metric bases.

THEOREM 2.5. Let R be a p-space with distance algebra B. A
subset S of R is a metric basis for R if and only if there exists an
equilateral p-tuple with side 1, {v, v, +--,v,}, such that the dis-
tance algebra does mot contain a mnonzero element w such that
wE Ns d(s, v)d(s, v;) [t # 7,1, =1,2, -, . (The intersection is to
be formed in the Boolean completion of the distance algebra).

The statement of Theorem 2.5 can be somewhat simplified in a
p-space for which the distance algebra is a complete Boolean algebra.

THEOREM 2.6. Let R be a p-space with complete distance algebra
B. A subset S of R is a metric basis for R if and only if there
exists an equilateral p-tuple with side 1, {v, v, ---, v,}, such that
Ns d(s, v,)d(s, v;) = 0, © = J.

A similar result cbtains if S is any finite subset of an arbitrary
p-space.

THEOREM 2.7. Let R be a p-space and S a finite subset. Then
S is a metric basis for R if and only if there ewists an equilateral
p-tuple with side 1, {vy, v, ---, v,} such that (Nsd(s, v,)d(s, v;) =0
[z = 7]

A useful algebraic interpretation of Theorem 2.7 is incorporated
in the following Theorem 2.8.

THEOREM 2.8. Let R be a p-space. Consider the p-ring E as a
subdirect sum of GF(p), that is as a set of “sequences” with terms:
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an GEF(p). Then if S is a finite subset of R, S is a metric basis
for R if and only if the set of kth terms of elements of S contains
at least p — 1 distincet elemenis of GF(p), for every k.

COROLLARY 1. A set of p — 1 elements of a p-space forms a
metric basts if and only tf it is equilateral of side 1.

COROLLARY 2. A metric basis for a p-space contains at least
p — 1 elements.

COROLLARY 3. FHvery element of an autometrized Boolean algebra
forms a metric basis.

Corollary 3 was originally discovered by Ellis [1].

Ellis |2] quotes a conjecture due to J. Gaddum that 1n a metric
space any equilateral set containing the maximal number of elements
forms a metric base provided the space is complete and convex.

In a p-space the maximal equilateral sets have exactly p-elements.
These sets are metric bases if and only if they have side 1, that is
that they are maximal with respect both to number of sides and to
common distance.

It is interesting to note that in a p-space even though every
metric basis must contain at least » — 1 points, there are infinite
minimal metric bases, that is infinite metric bases such that no proper
subset is also a metric basis. The following example illustrates such
a case.

Example 2.1. Let R be a 3-space in which the distance algebra
B is the complete direct sum of countably many copies of GF'(2). Let
S be the set of atoms in B. Then S is a metric basis for R, but no
proper subset of S has this property.

We concluded this section with a brief study of superposability
propertiez of metric bases in p-spaces.

It is known that every congruence between two finite subsets of
a p-space can be extended to a motion. The following example illustrates
that this conclusion cannot be extended to metric bases.

EXAMPLE 2.2. Let [0, 1) be the right open interval on the real
line. Let B denote the class of all subsets of [0, 1) that are unions
of finitely many right open intervals ¢, ), 0 =a <1, 0 <0 =<1, where
a and b are rational numbers. Then B is an atom-free Boolean algebra
whose Boolean operations are the usual set operations {4]. Further-
more, B is not a complete Boolean algebra. For example, the set X



1000 ROBERT A. MELTER

V2
of open intervals of the form [0, @) where a < "2 has no least upper
bound.

Represent this Boolean algebra as “sequences” of zeros and ones
indexed by the continuum from 0 to 1. Then a typical element of X
will appear as follows:

v
2

(1,1,1,1, o1, :40,0,0,0,0, - .. 0,0,0,0,0, )

A typical element of the set X* of upper bounds of X will appear as
Ve
(1,1,1,1,1, ------- L1,1, - 2 --1,1,0,0,0,---).

and a typical element of the set Y of complements of elements of X*
will appear as
V2
<0,0,0, ........... 0,0,-- 2 ..0,0,1,1,1,...).

It is clear that the sets X and Y have the same cardinality since
they are both infinite subsets of a countable set.

Let « — f(x) be any one-to-one correspondence between X and Y,
Zemmer [7] has shown that in a p-space with B as Boolean algebra
of idempotents there is a congruence which cannot be extended to a
motion, between the sets A and C defined as follows: A contains 0,
and for each 2 in X the element a + f(x). C contains 0, and for each
¢ in X the element « + 2f(x). The congruence F between A and C
takes 0 into 0 and x -+ f() into = + 2f(x). It will be shown, more-
over, that in the 3-ring with B as Boolean algebra of idempotents the
sets A and B are metric bases. Theorem 2.1 can be applied. Since
0ed, it is clear that N.esd(a, 0)d(a, 2) and [N.c.d(a, 0)d(a, 1) are
both equal to zero. However, since for any coordinate less than the
12 /2th there is a 1 in « for some # in X and for any coordinate
greater than the 1/ 2/2th there is a 1 in some ¥ in Y and since 2y =
= 0, Nuesd(a, 1) (in the complete direct sum) is the atom with a 1in
the 12 /2th coordinate, but since B itself is atom free, this implies
that there are no elements z of B such that 2z & N.es d(a, 1)d(a, 2)
and hence by Theorem 2.1 A is a metric basis. A similar argument
shows that C is also a metric basis, which establishes the example.

3. Imbedding and characterization theorems.

DerINITION 3.1. Let {S} be a class of Boolean metric spaces.
Then a Boolean metric space R is said to have congruence indices
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(n, k) with respect to {S} provided evey member of {S} containing
more than n + k distinet points, is congruently imbeddable in R, when-
ever every 7 of its poinits are imbeddable in R.

DEFINITION 3.2. A space R is said to have congruence order =
with respect to {S} provided it has congruence indices (n, 0) with re-
spect to {S}.

(It is understood that the distance algebras of members of the
comparison class are isomorphic with the distance algebra of the space
R.)

The following series of theorems will establish that a p-space with
Boolean algebra of idempotents B where B is a complete direct sum
of GF(2) has best congruence order p + 1 with respect to the class

of all Boolean metric spaces (S, B,d). Theorem 3.4 generalizes a
theorem due to Ellis [1].

LemmA 3.1. If A and B are congruent metric bases for a
Boolean metric p-space R and if f1 A— B is a congruence between
the two sets, which can be extended to a motion, then the extension
1S unique.

Proof. Suppose f and g are distinct motions which agree on A;
then there is an z € R such that f(x) = g(x). But for all ac A4,

d(f(@), fla)) = d(x, @) = d(g(2), 9(a)) ,
= d(g(x), f(@)) ,

which contradicts the assumption that B is a metric basis.

LEMMA 3.2. If A is a metric basts, for a Boolean metric p-space,
and A and B are superposable then B is also a metric basis.

Proof. Let f be a motion which takes A onto B. Suppose B is
not a metric basis, then there are elements «, ¥, of R such that
x # y, and d(x, b) = d(y, b) for all be B. But then d(f (), f(b)) =
d(f(y), £7(b)) for all f~'(b) in A, and since f is, in particular, one-
to-one, this contradicts the assertion that A is a metric basis.

COROLLARY. If A is a finite metric basts for a Boolean metric
p-space, and A and B are congruent, then B is also a metric basis.

Proof. This follows immediately from the lemma and the corol-
lary to Theorem 5 of [7].

If {S, S, +-+, S} and {t, t,, -+, t,} are subsets of a Boolean metric
space the statement
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S, Sy, -0, Sy ty, ty, -+-, t, is to indicate that the mapping which
takes S; into ¢; (¢t =1, 2, ---, k) is a congruence.

LEMMA 3.3. If {r], 7, ++-, Th_i} 18 @ melric basis for a Boolean
metric space and
7';", 7';”7 cccy 7.;7’—,«1; w"’ ~ 7';, T;y Tty ,r;-—ly .'L"

n 0y nr 1444 ’ ’ ’ ’
Ty Pay ooy Ty, Y RV, Ty ooy Tp1y Y

then

nr " "’ nr 444 rn’ ’ 14 ’ ’ oyt
Ty Py s Ty 2y Vpgy X, Y AT, Py Ty 20y Ppy, XY

Proof. Consider the unique motion which takes

{r], 7y, oo, Ty, @'} into {r v’y oo, i, 2"}

Such a motion exists since by the corollary to Theorem 5 of [7]
any congruence between two finite sets can be extended to a motion.
If Ac B and A is a metric basis, then B is also a metric basis. Hence
{r], s, « =+, ¥o_y, 2’} and {r", "', -+, )., &'""} are superposable, and by
the corollary to Lemma 3.2, {r;", »}’, -+, i’ "'} also forms a metric
basis and then by Lemma 3.2 the congruence

" " " Pt ’ ’
Piy Tyt Vpogy 20y X AV, Ty 200y Tpgy, X

can be unigquely extended to a motion. Suppose that this motion takes
Y’ into y* where y* # y'”’. Then

" mnr ”n 7 " mnr 1 3
iy T s Vpy Y ARV, 1, oy Tpy Y

which contradicts the fact that {r;”, ), ---, 7y}, being congruent
to a metric basis are themselves a metric basis by the corollary to
Lemma 3.2.

THOREM 3.4. A Boolean metric space S with distance algebra B
1s congruently imbeddable in the p-space R with Boolean algebra of
idempotents B if:

(i) S contains p — 1 points congruent with a metric basis of R,

(i) Every p + 1 points of S are congruently vmbeddable in R.

Proof. Let {0, 0s, -+, 0,—} be a p — 1 tuple of S congruent with
{ry 7y +++, r,—.} a metric basis in R, that is

(1) plyPZy""pp—IN’rl,,rZ,"'y?p—l-

Let o, be another point of S. Then there exists {r, 7}, «--, 7)_, 75}
in S, such that
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’

(2) pbpzvps;"'ypz?%”'{yr;"';rb

and by the corollary to Lemma 8.2 {r], i, -+, r,_,} is a metric basis.
Let {eS. Then again there exists {r, 7Y, ---,7), 2"} R such
that

” 144

(3) phlozv"'7!017’CNT7',;7';,’""/rznx
and therefore
124 n

’ ’ ’ !
(4) Ty Vag *o2s Tp RET L, Ty 200y Ty

Let «’ be the image of 2" under the unique motion which preserves
congruence (4). Thus there is defined a single-valued mapping ¢’ = 2'({)
of S into R, and

(5) p1,p2,"',P,,,CNT;,’V';,"',’)";,x,.

It remains to show that distances are preserved.
Let ,7€ S and let «, ¥ be the corresponding elements in £. Now

(6) O On ** 2y Oomyy S 0y 17y oo e, 10, @, Y € R

for some p + 1 tuple {»i", #), ---, )., 2", y'""}e R. Then using
Lemma 3.3, (5), (6) and the fact that ], 75, <+, 7,, ¥ ~ 01, 0oy ***, 01, )
it follows that

(Oly {02, *ty Iop—lv Cy 77 ~ 7"{”, ’}";", tt 7';,’11, 90”,, y”, ~ 7';, 7’;; ) /r;-lx” y'
and hence d({, ) = d{(z', ¥').
THEOREM 3.5. Let S be a Boolean metric space with distance

algebra B, then every p-tuple of S is imbeddable 1w the p-space R
with Boolean ring of tdempotents B.

COROLLARY. Ewvery finite Boolean metric space is tvmbeddable wn
a p-space, for some prime p.

Proof. Let {s, s, ---,s,} be a p-tuple in S. Let ¢;; denote d(s;, ;).
Consider the following set of p — 1-tuples of elements of B:

s; = (0,0, , 0)
8, = (¢, 0, , 0)
8; = (Q13G2s 915923 0, , 0)
8i = (9142t C1i024T54r 14924056, 0, , 0)

8% = (Q1957y 0150355, T1i%2505i%ass ** *» Lilai * ** Limti> T1iGa5 * * * Q1,52 0, * =+, 0)
s} = (Qm@;y 092085y ***s Qixop *** Qo—1,py QipQap *** Qp—1,p) -
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It is clear that the s} are p — 1-tuples of pairwise orthogonal elements
of B and therefore by Theorem 1 of [7] correspond to elements of R.
It remains to show that the mapping N :s;— s} is an isometry. Let
q"iJ’ = d(s§7 S;’)'

Consider the rings B and R in their subdirect sum representations.
In order to show that )\ is an isometry it is sufficient to show that
gi; has a zero in a given component if and only if ¢,; has a zero in
that same component. Let @;; and Q;; represent the ath component
of q;; and qi; respectively. Let S, represent the entry in the ath
component of the subdirect sum representation of s/.

Assertion. Q;; = 0 if and only if Q}; = 0.

It is clear that Q,; =0 if and only if Q;=0, [/=1,2,---, p].
Suppose, therefore, that ¢, 7 = 1.

Suppose that @;; = 0 and assume without loss of generality that
7 is less than j. Then S; is equal to «# where 0 <z <4 — 1. But
if S;=2—~1 where 1< <% then ;=1 for t=1,2, -+, — 1,
and @,;, = 0 which implies that @,;, =1 for n =1,2, ---, 2 — 1. (For
if Q=0 for some #,[n=1,2, .-+, — 1] then by the triangle
inequality @, =0, Q;;, =0 imply Q,;, =0 which is a contradiction.)
But then since @,; =0, Q; =0 imply Q,,=0, S;=2—1, and
Qi; = 0.

Now, still under the hypothesis that @;; = 0 it remains to show,
in order to complete the proof of the necessity of the assertion that
if S;,=0, then S; =0. But if S;=0, @, =0. (For suppose S; =0
and @,; = 1, then there must be an », [r = 2,3, ...,5 — 1] such that
Q,; = 0. But then by examining the term in s; involving @,; it is
seen that there must be a v strictly less than » such that Q,; = 0,
and proceeding by indut¢tion @Q,; = 0, contrary to hypothesis). But
Q.,; =0 and Q;; = 0 imply by the triangle inequality that @,; = 0 and
hence S; = 0 which completes the proof of the necessity of the assertion.

To demonstrate the sufficiency of the assertion it must be shown
that if Qi; = 0, then Q,; = 0.

If @,; =0, then S, = S; = x, where « is an integer mod p. Assume
without loss of generality that ¢ < j and suppose 2 == 0, ¢ — 1. Then
Q.—.; = 0, Q,.,; = 0 which together imply that Q,; =0. Ifx =1¢—1,
it is clear from examining the term in S; involving Q;; that Q;; = 0,
and lastly if x =0, Q; =0, and @; = 0; hence by the triangle ine-
quality @;; = 0. This completes the proof of the theorem.

To clarify the proof, it seems worthwhile to establish the theorem
without using the subdirect sum formulation, in a particular instance.
Thus let {s, s, s;} be a Boolean metric triple. Then
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8{ = (07 0) ’
83 = (qu, 0) ,
8 = (q13q_23y Q133) -

Since the sum of the coordinates in a Boolean vector representation is
the distance from the origin it is clear that ¢, = ¢i,. By the same
token

q{a = Q13(Q23 =+ _@) = Gz »

Lastly ¢i, = d(s; — s;, 0). The Boolean vector representation of s; — s;
is (a;, a,) where

0y = QoG5as + Q15925 Gas
0y = GiGrslas + Coaalas + Qislos

so that g5, = a, + @,, which upon simplification gives

q;3 = iy + Q3 T G1291595s
= (s

since in any Boolean metric space the product of the lengths of the
sides of a triangle is equal to their sum.

Before indicating the procedure for imbedding p + 1-tuples, a defini-
tion of a chain of integers and some lemmas concerning these chains
will be presented.

DEerFINITION 3.3. Let ¢, j be positive integers such that ¢ < 7. An
(¢, 7) chain is any finite sequence of positive integers such that

(1) The sequence has exactly j terms,

(2) The first element in the sequence is 1, and the last is <,

(3) The terms in the sequence are selected from the integers
1,2, -+, 7,

(4) If r and s are integers which occur in the sequence and 7
is less than s, then the first occurrence of 7 precedes the first occur-
rence of s. Every integer between r and s must occur if = and s
oceur.

Let @, x,, ++-, x; be an (4, j) chain. Define a metric on this chain
by letting d(x,, 2,) = 7., = 1 if 2z, # «, and d(x,, ©,) = 7, = 0 if x, =
Z,.

Levmma 3.6. Let s, s, +-+,s, be a v-tuple in o Boolean metric
space. Let t;; = d(s;, s;) and let T;; denote the ath component in the
subdirect sum representation of t,;. Then there exists a unique (i, v)
chain I' such that vy, = Ty, a,b=1,2, -+, v,
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Proof. By induction on ». For v =1 the theorem is trivially
satisfied. Suppose then that {s, s, ---, s,} is a Boolean metric k& tuple
and «,, @, ---, x, is the unique chain such that r,, = T,;. If T\ =1
for w=1,2, ---, k, let z,., be the next integer not already used in
the chain. This integer is uniquely determined and »,, = T,, a,b =
1,2, ---,k + 1. On the other hand if T5,,,, =0 where 1w =k + 1,
let 2, — 23. %,., is uniquely determined, for if 7T3,., =0 and
Tz,.4. = 0, then by the triangle inequality T35 = 0 and so x; = 23 =
Zy+; and hence #3,.,=0. If r,,.,=0, then z, = 2, = x5, hence,
T, =0, which with the hypothesis 75,,,; = 0, yields T,,,,; = 0, which
completes the proof.

DEFINITION 3.4. Let {p, ,, -+, »,} be a finite subset of a Boolean
metric space. Then the distance product of this subset is defined to
be

Iij d(p;, P;) .

THEOREM 3.7. Let S be a Boolean metric space with distance
algebra B. Ap + 1-tuple K of S 1s imbeddable in the p-space R with
Boolean ring of idempotents B if and only if the distance product
of K 1is zero.

Proof. The necessity is easily established. Let {t, ., «+-, t,01}
be points of a p-space. In the ath component of the subdirect sum
representation, each of the 7, must contain one of the elements of GF'(p).
Thus in this ath component, for some ¢, d, t, and ¢, have the same
element of GF(p), and hence the distance product has a zero in the
ath component. Since this is true for every «, the distance product
of {t, t,, ---, t,,1} is zero.

To establish the sufficiency of the condition, let {s,, s, ---, s;} be
a Boolean metric j-tuple and let C;; be an arbitrary (¢, 5) chain. De-
note by ¢, the distance d(s,, s,) and let CF; be the product

11 9(qas)

a,0=7

where ¢(q.,) = G, if the ath and bth terms in C,; are identical;
9(Qsy) = Qap, if the ath and bth terms in C;; differ. Let {s, s,, s, - - -,
s,11} be a Boolean metric p + 1 tuple with distance product zero.
Define a set of p — 1-tuples of B as follows:

by = (5, 1y v ooy Uy oo, 157) J=12--,p+1)

where % is equal to zero if I > J — 1, otherwise ¢} is the Boolean
algebra union of all the elements oi B of the form C},,,;.
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Let T; denote the ath component in the subdirect sum representa-
tion of #I.

In order to show that the mapping s, — ¢, is a mapping intc a
p-ring, it is sufficient to establish that 77" = 0, if » = m. But
this follows at once from the fact that 7 = 1 if and only if there is
an (n +1,J) chain x,x,, ---, 2, such that the «th component of
d(s,, s,) is equal to d(x,, x,) [a,b=1,2, ---,J], for it follows from
Lemma 3.6 that two (¢,7) chains are isometric if and only if they
are identical. ‘

Since T =1 if and only if ¢, has an I in the ath component and
also if and only if {s, s,, ---, 8,} is such that for 2 unique (I + 1, J)
chain 4y, ¥, «++, ¥s, d{Y., ¥,) is equal to the ath component of d(s,, s,),
(a,b=1,2, ..., J), it follows that {R, + 1, R, + 1,--., R,., + 1}, where
R, is the ath component of ¢,, is the unique chain such that d(R, + 1,
R, + 1) ig equal to the ath component of d(s,, s,) (m, n =1,2,-+-,p+1)
and hence the ath component of d(¢, t,) = 0 if and only if the ath
component of d(s,, s,) = 0. This completes the proof of the theorem.

Recall that if B is a Boolean ring, B* designates the complete

direct sum of those GF(2) used in the subdirect sum representation
of B.

LEMMA 3.8. Let S be Boolean metric space with distance algebra
B, im which the distance product of every p -+ 1 paints is zero.
Then S is congruent with a subset of a Boolean metric space S*
with distance algebra B*, such that B 1s isomorphic with a sub-
algebra of B*, the distance product of every p + 1 points of S* is
zero, amd S* contains an equilateral p — 1-tuple of side 1.

Proof. Let {t, t, ---, t,} be a maximal equilateral set of side 1
in S. If n=p—1, no further proof is needed. If n < » — 1, con-
sider B in its subdirect sum representation and let B* be the complete
direct sum of the GF'(2) used to represent B. Let S* be the set union
of S and an element . Define a distance d’ in S* as follows: if
xz,ye S, d(z,y) =dx,y), d{o,c)=0. For xes, define d'(z, 0) = q.,
by giving its ath component Q.. as follows: If for all we S, the ath
component of d(w,t,) =0 for some ¢©=1,2, ---, % then @Q.,.=1 for
all e S. If there is a w, such that the ath component of d(w,, t,) =
1 forall t=1,2, --- n, then let Q.. = 0 if and only if d(x, w,) has
a zero in the ath component.

To show that S* is a Boolean metric space, observe that it is
clear that if 7, s are elements of S*, with » = s, then d'(r, s) = 0.
If d'(r,s) =0, it is evident that » = s if » and s are both elements
of S. Suppose then that d'(x, 0) = 0 where xe S. But then in the
ath coraponent d(x,w,) has a zero, where w, is such that the ath
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component of d(w,, t;) =1 for 1 =1, 2, ---, n, by the triangle inequal-
ity. Since this is true for every «, {¢, ¢, -+, t,, ¢} is an equilateral
set of side 1, contrary to hypothesis. The symmetry of d’ follows at
once from its definition. For the triangle inequality the only triples
which need be studied are those of the form (z, ¥, o). But, referring
now to the ath component, if d(x, ¥) = 0, d(y, 0) = 0 then d(y, w,) =
0, hence d(x, w,) =0 and d(z,0) =0 and if d(x,0) =0, d(y,c) =0
then d(x, w,) = 0, d(y, w,) =0, and d(x,y) = 0. In all other cases
d(x, v), d(z, 0), d(y, o) clearly form a metric triple, because «, ¥, 0, is a
Boolean metric triple unless in some component two of d(x, o), d(y, 0), d(x, y)
are equal to zero and the third is equal to one.

To show that {¢,t, ---,t,} form an equilateral set of side 1,
suppose this is not the case, then in some ath component, for some
i, d{o, t;) = 0, but then d(o, w,) = 0, hence d(w,, t;) = 0, contrary to
the definition of w,.

In verifying that the distance product of every p + 1 points of
S* is zero, it is sufficient to consider p + 1 tuples {r, 7, -+, 7,, 0},
[r; € S] where in some ath component, the distance products of the 7’s
is one. But if the ath component of d'(r;, ) is one for 1 =1,2, -+, p,
then either there is for every v, a7, [/ =1,2, -++,n] wheren < p —1,
such that d'(r; t;) has a zero in the ath component (which implies
that for some ¢, j, k, d'(v,, t,), d'(r;, t,) have zeros in the ath com-
ponent and so d'(r;, r;) has a zero in the ath component, contrary to
hypothesis). On the other hand, if there exists a w, such that in the
ath component d'(w,, t;) =1 for all 7, [7=1,2, -+, %], and d'(o, 7))
has a 1 in the ath component, then d'(w,, ;) has a 1 in the ath com-
ponent. But then {r, r,, ++-, r,, w,} is a p + 1 tuple in S with distance
product different from zero.

Continuing in this manner a space containing an equilateral p — 1
tuple of side 1 is obtained.

THEOREM 3.9. Let S be a Boolean metric space with distance
algebra B and let R* be the p-space with Boolean ring of idempotents
B*. The space S 1is congruently imbeddable in R* if and only if
the distance product of every p + 1 points of S is equal to zero.

Proof. By hypothesis the distance product of every » + 1 points
of S is zero. Then by Lemma 3.8, S is congruently contained in a
Boolean metric space S*, with distance algebra B*, containing an
equilateral » — 1 tuple of side 1, and in which the distance product
of every p 4+ 1 points is zero. By Lemma 3.7, every » + 1 points of
S are imbeddable in R*, and by Theorem 3.4, S* is congruently im-
beddable in R*, and hence S is congruently imbeddable in R*. This
establishes the sufficiency of the condition and the necessity follows
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immediately from Theorem 3.7.

COROLLARY 1. S s congruently imbeddable in R* if and only if
every p + 1 points of S are congruently imbeddable in the p-space
R, with Boolean ring of idempotenis B.

COROLLARY 2. R* has congruence order p + 1 with respect to
the class of all Boolean metric spaces (S, B*, d).

LEmMMmA 3.10. A p-space does not have congruence order p.

Proof. Let M be a Boolean metric space of any cardinality in
which the distance of every two distinet points is one. Then M has
every p points imbeddable in a given p-space, but M itself need not be.

THEOREM 3.11. A p-space R*, with distance algebra B* has best
congruence order » + 1 with respect to the class of all Boolean metric
spaces.

Proof. By Corollary 2 of Theorem 3.9 the best congruence order
of R* is less than or equal to p +1, but by Lemma 3.10 the con-
gruence order is greater than p.

Another topic of interest in distance geometry is psuedo sets.

DeErFmNITION 3.5. A »+ 1 tuple T in a Boolean metric space is
said to be a pseudo-p-space p + 1 tuple if every p points of T are
imbeddable in a p-space but T is not.

THEOREM 3.12. A Boolean metric p + 1 tuple is either imbeddable
m a p-space or is a pseudo-p-space p + 1 tuple.

Theorem 3.9 gives a solution to the congruent imbedding problem
of determining necessary and sufficient conditions in order that a
Boolean metric space be isometric with a subspace of a p-space. In
order to obtain a characterization of Boolean metric spaces themselves
one method is to first categorize those subspaces of a given p-space
which are themselves p-spaces among the class of all subspaces of the
p-space. This is accomplished in the following two theorems.

THEOREM 3.13. Let R be a Boolean metric p-space with distance
algebra B. Let S be a subspace of R. Then a necessary and suffi-
cient condition that S be a p-space is that:

(1) There exists a subalgebra B of B such that S contains an
equilateral p — 1 tuple with side 1 of B:{t, ty, «--, tyu},
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(2) There is a one-te-one correspondence between the elements
of S, and the set of pairwise orthogonal p — 1 tuples: {c,, ¢y, +++, Cps}
of elements of B, such that for xe S, d(z,t,) =¢c,.

Proof. The necessity is clear, since for any sub-p-space, {t,, t,, - -,
t,.} can be taken as summands of the identity and the ¢; are then
the “coordinates” in a Boolean vector representation.

Sufficiency. If the conditions of the theorem are satisfied the set
of » — 1 tuples of ¢’s form a p-ring, which is a subring of the original
ring.

THEOREM 3.14. Let S be a Boolean metric space with distance
algebra B. A mnecssary and sufficient condition that S be a p-space
18 that:

(1) The distance product of every » + 1 points of S is zero
and for some subalgebra B of B

(2) S contains an equilateral p — 1 tuple of side 1 in B

(3) There is a one-to-one correspondence between the elements
of S, and the set of pairwise orthogonal p — 1 tuples: {¢;, ¢,, +++, Cpi}
of elements of B, such that for xe S, d(z,t;) = G,.

Proof. By Theorem 3.9, S is a subspace of a p-space, but by
Theorem 3.13, S is then a p-space.

4. Properties of the group of motions. This section is devoted
to developing certain properties of the group of motion of p-spaces.

THEOREM 4.1. In a p-space every rotation about the origin s a
product of a finite number of tnvolutions.

Proof. Let R be a p-space and B its distance algebra. Let o —
f(x) be a rotation about the origin on R, and M the matrix corresponding
to f. Then M = (a;;) is a (p — 1) X (p — 1) matrix with elements in
B gatisfying a;,a;; =0, 7 # k, and a;0,; =0, 1+ k, and MM = I,
where a;; € B.

For be B, denote by 6", the rth component of b in the subdirect
sum representation of B, and define M = (aj;).

Then the set {M "}, » € .22, consists of at most (p — 1)! different.
matrices each of which is a permutation matrix. Clearly

M = M" M- -+ MY,

where the elements on the right are transposition matrices.
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Whence M can be transformed into M\ " by a certain permuta-
tion of its columns.

Let M,, be the matrix which results from applying these same
column operations to M.

Let Z, be the product of those elements in M corresponding to
the U's in M. Let Z!* be the sth component of Z,, and note that
Z!® =1 1if and only if M"™ = M,

Let M7 be the matrix obtained from M,, by multiplying every
element by 2, and then adding Z, to the elements along the main di-
agonal, i.e., M = Z.M,, + Z,I.

Denote the matrix of ¢th components of Mj by M3x™.

It follows that:

0 — ) if M = M®
MY =1 if Mr= M.

(From the definition of M}, if MW = MY, Mi¥ = M, and
from the definition of M,,, M) = M)7, which is equal to M” by the
definition of M, that is, M}® = M{").

Thus

H M:];(t) — M(T) if M(?’) — M(t)
k
T MEa» =T i M® = M® k=1,2++,p—2).
k
Now select a minimal set of +'s, L = (r, 7, ++-, 7,) such that
each M™ = M~ for some 7;€ L. Then
M:HMrtk (k:]-}Z"."p_Z;’rjeL)'
To show this, observe that ,
M®™ =TT Mx» (k=1,2+,p—2r;el).
Let rse€ L be such that M™ = M"¢. Then
LM = (I ML M)
=M1
= Mo = MW

COROLLARY. FEwvery motion which leaves zero fixed in a 3-space
1s a reflection. Every reflection in a 3-space therefore has determi-
nant equal to —1.

The proof of Theorem 4.1. suggests that there is a close relation-
ship between the group of motions of a p-space, and permutation
groups. Indeed it is the case that the group of motions is a subgroup
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of the direct product of permutation groups on p — 1 letters. This
will be made precise in the following two theorems.

DEriNITION 4.1. Let B be a Boolean ring. Consider B as a sub-
direct sum of GF(2). Let @ be a group of permutations on p-symbols
and G, the full direct product of @ of the same cardinality and num-
ber of summands as B. For be B, and Pe @, let g(P, b) be the element
of G, which effects the permutation P where b has 1’s and the
identity permutation elsewhere. Denote by G.(B) the subgroup of
@, generated by the set of elements g(P, b), Pcp, be B.

THEOREM 4.2. Let R be a p-space with Boolean ring of tdem-
potents B. Then the group of motions of R which leave zero fixed
ts G¢(B) where T is the symmetric group on p — 1 symbols.

Proof. Let M be a motion matrix for R. In the proof of Theo-
Ttem 4.1 it was shown that M can be written as a product of matrices
M;‘;.,c, but these matrices correspond to motions of the form g(¢, b)
where t is a transposition.

COROLLARY. Let R be a p-space. Then the group of motions of
R is G«(B), where S is the group of permutations on p symbols.

Proof. Let f(x) be a motion, then f(x) = «M + b. It has been
shown in the theorem that the rotation is an element of G,(B) and
hence of Gg¢(B). Consider now the translation ¢(x) =« +¢. It can
be written as the product of translations as #(x)-fy(x) «++, *{,i(¥)
‘where t(x) = 2 + ©(1 — (¢ — %))** which are elements of Gg(B).

On the other hand it must be shown that every element of G¢B
is a motion. It suffices to show that every g(P, b) is a motion. Thus
let g(P, b) be given. If P fixes zero, the result follows from the
theorem. If P does not fix zero, let 0’ be the image of zero under P.
‘Consider the permutation ¢: #— & — 0’ of the integers mod p. Then
g(pq, b) is a motion and has a matrix M, and f(x) =M + 0'b cor-
responds to g(p, b).

THEOREM 4.3. Let R be a 3-space with Boolean ring of idem-
potents B. Then every motion f on R which leaves 0 fixed is of the
Jorm f(x) = ax where a is a unit in the 3-ring.

Proof. It follows from Theorem 4 of [7] that f(x) = 2M where
M= (a;;) 1,5 =1, 2, and a;;€ B. Further

M:( a 1+a,)
1+a a
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Suppose then that « = (x,, ,), and so

f(x) = (a'x1 -+ (1 + a)mzy (1 + a)xl + a/xz)
= (xly xz)'(a; 1+ a/)
where (a,1 + a)a,1 + a)=(1,0) =1,

5. Analytic geometry in p-spaces. If a rectangular coordinate
system is introduced in a Euclidean plane E, a point P can be repre-
sented as a pair (x,¥) of real numbers. One then seeks to describe
geometrically the loci of equations of the form ¥ = f(x), and conversely,
given a geometric description of a plane set, to find the equation of
which it is the corresponding locus. But a point P in the Euclidean
plane may also be considered to be represented by the single complex
number z = ¢ + 4y. Here the question is not so much the investiga-
tion of the loci of equations of the from f(z) =0; a study is rather
made of the way in which geometric properties change or remain in-
variant under transformations w = f(2) of the plane into itself. It is
the purpose of the following remarks to exhibit theorems which illus-
trate that an analytic geometry for p-spaces may be developed in a
manner analogous with both of the methods discussed above for
Euclidean plane geometry.

Suppose, therefore, that B is a p-space. Since the elements of
the p-ring R are in one-to-one correspondence with the points of the
p-space R, every function f(x) defined for all z in the p-ring K and
having values in the p-ring R induces a mapping of the p-space R into
itgself. This mapping need not of course preserve distances, and in
general will not even be one-to-one. Theorem 5.2 establishes necessary
and sufficient conditions that a polynomial function defined on a p-ring
R induce a motion on the corresponding p-space.

The following theorem, which was first established in 1882 is needed

for the proof.

THEOREM 5.1. Raussnitz [6]. Let f(x)=a_ 2" + a@?? +a,x?° +
<+ 4+ a,_, be a polynomial where a, € GF(p), ¢t = —1,0,1,2, -+-, p—1).
Then a mecessary and sufficient condition that f(0), f(1), <+, f(®@ — 1)
be distinct is that (i) the determinant R(k) be equal to zero for k =
9,10, ,—1,a,,+1, <+, 0—1 where

Oy Ay @y *°° Qpg Apy — k
a, ay py — K a

R(e) = [+oveen

Qpz — k& @y @ Ap—y Ap—s
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and (i) a_, = 0.

THEOREM 5.2. Let R be a p-space. Then a mnecessary and suffi-
cient condition that the polynomial

P(x) = a_lxp—l + aoxp——z + alxp—-a R

where the a; (1 = —1,0,1, -+, p — 1) are elements of the p-ring R,
induce a motion on the p-space R is that

(i) a,=0
and

() Re)=0 (k=0,1,2 +--, p — 1) where

Qo Ay Ay e Apy Ap—y — G
a, a, a, Qpey — €, @y

Rey) = | cvvee
Upy — € Wy O Qs Qps

and ¢, = —(@p—, — kY + k + 1. (Note that R(k) has integer argu-
ments wheréeas the arguments of R(c.) are elements of a p-ring).

Proof. Suppose that the polynomial P(x) corresponds to a motion
M on the p-space R, and consider the p-ring R as a subdirect sum of
GF(p). Then the elements of R may be represented as (7, 75 **-,
7y, +++) Where the r,€ GF(p). Clearly M induces a permutation p, on
the components »,, for every t. If for ;¢ R and x,€ R, r; = 7; and
M(r}) # M(r}), then d(x,, @) will have a zero in its tth component
while d(M(x,), M(x,) will have a one in the tth component contradict-
ing the assumption that M is distance preserving. The uniqueness of
p, is a consequence of the fact that the motion M is a well defined
mapping. Let a;, be the tth component of a; in the subdirect sum
representation of RB. Then the polynomial

Pt(x) = a'—l,txp_l + ao)tqu + aq,txp#a +oee +a’p—2,z

must represent the permutation p, on the elements of GF'(p). Hence
by Theorem 5.1, a_,, = 0, for all ¢, so that a_, = 0. Also, R(k) =0
for all ¢, and k=0,1,2,---,a, ,—1,0,,,+ 1, --+, »p— 1. Notice
however that ¢,, ranges over 0,1,2, <+, @y, —1,,0,5,+ 1, +-,
p —1 as k takes on the values 0,1, ---,» — 1. Thus R(c¢,) =0, for
k=0,1,2 +--,p—1, and the necessity of conditions (i) and (ii) is
established.

On the other hand, suppose that conditions (i) and (ii) are satis-
fied by P(x). It will first be shown that the polynomial P*(x) where
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P*(x) = P(x) — a,_, also satisfies conditions (i) and (ii). For each ¢,
the polynomial P,(x) satisfies the conditions of Theorem 5.1 and hence
P(x) induces a permutation p, on the tth component of the subdirect
sum representation of the p-ring K. But in each component P*(x) also
induces a permutation and since conditions (i) and (ii) of Theorem 5.1
are necessary conditions, P*(x) satisfies conditions (i) and (ii) of Theorem
5.2. It is clear that if P*(x) is a motion, so also is P(x), and thus it
is sufficient to consider polynomials P(x) for which a,_, = 0.

Since there are only a finite number of different permutations on
the elements of GF'(p), it is possible to choose a finite set of distinct
permutations

{QI’ qzy ¢y QS} =1

in such a way that for each ¢, p, is equal to one of the ¢;. Note
that 1 < s < p!. Now, with each permutation g¢,;, there is associated
at most a finite number of polynomials

Qin(®) = ifiwr™ + e 4 -ee + il [k=1,2, -+, wy]

in GF(p) [«#] which satisfy the conditions of Theorem 5.1 and such
that ¢;(1) = Q,,(%), 1 = 0,1, -+, p—1, k=1,2, -+, w,.

Define b;,, an element in the Boolean ring of idempotents, as
follows:

bjk = (ao - iéf‘l)c)p—l U (a1 - ii{l)c)pi1 Ue--u (afp—a - 'iﬁzjlz,k)p—l .

This element has a zero in those components ¢ of the subdirect sum
representation of the Boolean ring of idempotents, where

Ay,; = ,I;h];)/c [h - 0; 1’ cre, D — 3]

and has a 1 in the other components. Let

wi
b, =1+ I]l b, »
and note that b; has a 1 in those components ¢ where the permutation
q; = P, and zeros elsewhere.
Define a matrix M = (m,;) as follows:

Mz = bj, + b, + -+ 4 by,

where ¢;, 9;,, ***, Q;,, ***, ¢;, are those elements of /" which satisfy
q;(t) = J, and m;; = 0 if there are no such permutations in /". It can
be seen that m,; has a 1 in the ¢th component if and only if P,(7) =
J. Since the b; are pairwise orthogonal and a permutation is a one-to-
one onto map, it is clear that M satisfies the conditions for a motion
matrix and P(x) = xM.



1016 ROBERT A. MELTER

To illustrate the second point of view in analytic geometry refer-
ence will be made to the particular instance of a 3-space, although
similar results could be obtained for larger primes.

It follows from the Boolean vector representation of p-rings that.
a 3-ring can be represented as the set of all pairwise orthogonal ordered
pairs (¢, y) of elements from its Boolean ring of idempotents. Thus
the pair (z, ¥) can be considered as coordinates for points in the 3-space.
The locus of all points of the 3-space, whose coordinates satisfy an
equation of the form Az -+ By + C =0, where AUB =1, is called a
linear set. (The indicated operations are those of the Boolean ring of

idempotents).

THEOREM 5.3. A linear set is a circle of radius A + B+ C.

Proof. Denote by £ the linear set associated with the equation
Ax + By + C = 0. Then if (x,y)e 2,

di@, 9,1+ B 1+A4)]=A+B+C.

For
di(x, ¥), (1 + B, 1+ A)]=d[(1 + B, 1+ 4) — (z, %)), 0]
=d[(c,d),0] =c¢+d
where
c=1+A)2+yl+A+14+B+1D)+ A +B)A+x+9y)
d=1+By+21+A+1+B+1)+A+A0+2+7w
hence

ct+d=Ax+By+A+B=A+ B+ C.

Also if d[(1 + B,1 + A), (x,y)] = A + B + C then from the above
[d(x,y),1+ B,1+ A)]=Ax+ By + A+ B

and hence Ax + By + C = 0.

COROLLARY. The form A + B+ C is a complete set of invariants
for linear sets under motions.

The following theorem illustrates a connection between the geom-
etry of a p-space and the geometry of its Boolean ring of idempotents.

THEOREM 5.4. If R is a p-space and B the corresponding
Boolean ring of idempotents, then B itself is a Boolean metric space
and is isometric to the set of idempotents of R, considered as a sub-
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space of R. Further, any motion on B, can be extended to a motion
on R.

Proof. In an autometrized Boolean ring, the distance between
two elements is the ring sum. But if # and ¥ are idempotents in a
ring their sum in the Boolean ring of idempotents is « + ¥y — 2wy.
But it is easy to see that if x and y are idempotents in a p-ring
x4+ y— 22y = (¢ — y)**. Hence the distance between two idempotents
is the same, whether the set of idempotents is congidered as a sub-
space of the p-space, or as forming a Boolean ring itself.

If fis a motion on B, then the motion f*(x) = xM + f(0) is a
motion on E which coincides with f on B, where the matrix M = (m,;)
is defined as:

My = Mpq,p—1 = m , My,p1 = My, = f(0),

my;; =1 for 1= 1, p — 1, and all other elements in the matrix equal
to zero..
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