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1. Introduction. Throughout the paper X will denote a complete
metric linear space (i.e., a complete topological linear space with topology
derived from a metric d with the property that d(x, y) — d(x — y, 0),
for all x,yeX) or some specialization thereof over the real or complex
field; 11 # | | will denote d(x, 0); and if {xn} is a sequence in X, [xn] will
denote the closed linear span of the elements {£cw}weω.

A sequence {xn\ is said to be a basic sequence of vectors if {xn}
is a basis of vectors of the space [xn], i.e., for each x e [xn] there
corresponds a unique sequence of scalars {αj such that

(1.1) x = Σa&if

the convergence being in the topology of X. We say that the basis
is unconditional if the convergence in (1.1) is unconditional. It is well
known that if {xn} is a basic sequence of vectors, then every x e [xn]
can be represented in the form x = ΣΓ=i/i(#)#ί where {/J is the
sequence of continuous coefficient functionals biorthogonal to {Xi} (Arsove
[1, p. 368], Dunford and Schwartz [4, p. 71]).

Similarly, we say that a sequence {MJ of nontrivial subspaces of
a complete metric linear space X is a basis of subspaces of X, if for
each xeX, there corresponds a unique sequence {#*}, x{ e Mt for each
i, such that

(1.2) x = Σ,Xi.

This concept has been studied by Fage [5], Markus [9], and others in
separable Hubert space and by Grimblyum [6] and McArthur [10] in
complete metric linear spaces. We say that the basis of subspaces is
unconditional if the convergence in (1.2) is unconditional.

If {Mi} is a basis of subspaces for X, for each ieω define E{

from X into X by E^x) = x{ where ΣΓ=i x% is the unique representation
of x e X. Eι is a projection (linear and idempotent); E{Ej = 0 if ί Φ j ;
the range of Et is M<; for each x e X, x = ΣΓ=i E^x) and if E^x) = 0
for each i, then as = 0. {Mτ) will be called a Schauder basis of
subspaces if each ^ is continuous.
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A sequence {M }̂ of non-trivial subspaces of X is a (unconditional)
basic sequence of subspaces if {ikfj is a (unconditional) basis of subspaces
of [Mi], the closed linear span of \Jieω M{. If {MJ is a basic sequence
of subspaces and x e [Mt] then x = ΣΓ=i -£*(#), where 2^ is now defined
on [Mt].

The classical Paley-Wiener theorem can be formulated in X as
follows.

1.3. THEOREM. Let {xn} and {yn} be sequences in X and let
be a real number (0 < λ < 1) such that

X

(1.3a) Σ dn ~ Vn) ^ λ

holds for arbitrary scalars alf « , α m . Then (1) if {xn} is a basis
so is {yn}; (2) if {xn} is fundamental (i.e., [xn] = X) so is {yn}.

Recently Arsove [1] showed that Theorem 1.3 is valid in a complete
metric linear space. It is the purpose of this paper to show that this
result and results similar to those of Pollard [13], Hilding [7], and
Nagy [11] (all of which generalize condition 1.3a) are valid for basic
sequences of subspaces in X. As a corollary to Theorem 4.3 we obtain
a new version of the Paley-Wiener theorem.

The author wishes to express his gratitude to Professor C. W.
McArthur for his help and encouragement in the preparation of this
paper.

2. Basic sequences of subspaces* Special cases of the following
lemma have been used by Hilding [7, p. 93], Nagy [11, p. 76], and
others to prove theorems similar to Theorems 2.3 and 2.4.

2.1. LEMMA. Let {Mt} and {Ni} be sequences of nontrivial
subspaces of the complete metric linear space X. Suppose that for
each ieω there exists a one-to-one linear transformation Ti of Mi
onto Ni and suppose further that there are positive numbers m, M
such that

(2.1a) m V
2

holds for arbitrary xt e Mi9 i — 1, , p. Then
( i ) there is a linear homeomorphism T of [M^ onto [Ni] such that
the restriction of T to M{ equals Ti for each ieo) and such that

(2.1b) m\\x\ T(x)\\ ^ for all xe[Mζ]
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(ii) {Mi} is a (unconditional) basic sequence of subspaces if and only
if {N^ is a (unconditional) basic sequence of subspaces.

Proof. Let Xo denote the space of finite linear combinations of
\Jieω MiΛ These, of course, are reducible to the form Σ?=i xi9 α?< e M{.
If xif x'i e Mi9 i = 1, , p and Σ?=i χι = Σ?=i χl t h e n f r o m 2 l a it
follows that Σ?=i Γίί^ί) = Σ?=i Γi(»0. Thus we may define a linear
transformation S from Xo into [ JVJ by S(Σf=i »<) = Σ?=i Γ ; ( ^ ) and
have m | | a? || ^ | |S(a) | | ^ M||a?| |, for all xeX0. It is clear that S
restricted to M{ is equal to T; and that S is continuous. Thus defined
on a dense subset of [Mi], S has a unique linear extension T to [ΛfJ
satisfying 2.1b. From 2.1b it follows that T is one-to-one and T~~r

is continuous. We show T is onto [N{].

Let y e [JVJ. Then 7/ = limfc gfe where gk is of the form gk = ^ί\]yψ\
yψ] 6 Ni, i = 1, , %(fc). For each such ^ f c ) there is a unique x^ e Mi
such that Ti(xik)) = ^ f c ) . Let &fc = Σ " ^ ^1& ). Then from 2.1b,
|| hp — hq || ^ (1/m) || flτP — flrJI, so {fej is Cauchy and there is an x0 e [JkfJ
such that {̂ fc} —> x0. Clearly, T(x0) = y.

To verify (ii) suppose {M{} is basic, i.e., a basic sequence of
subspaces. Let ye[Ni\. Then y = T(x) for some xe[M{]. x has a
unique expansion x = ΣΠ=i»», »» e Λf< and y — ΣΠ=i Γ ί^) , Γ(α?i) e Nt.
Now if 2/ = ΣΓ=i 1/i, yi^Ni, then ^ = T(x ) for some unique xleM^
Hence 0 = Γ(ΣS=i ̂ i " ^0 which implies xt = a J. Since the expansion
for 2/ is unique, it follows that {JVJ is basic. The converse follows
from (i) in the same way. If in the preceding argument {Mt} had
been assumed an unconditional basis of subspaces for [M ]̂ then the
series ΣΠ=i#ϊ would have been unconditionally convergent to x and
since T is a linear homeomorphism it follows that ΣΠ=i ϊX&i) would
be unconditionally convergent.

2.2. DEFINITION. TWO sequences {x{} and {y{} (in the given order)
in X are said to have the property:

(P-W) (for Paley- Wiener) if there is a real number λ (0 < λ < 1)
such that || Σ?=i aί(χi — 2/») II ^ λ || Σ?=i aiχi II holds for arbitrary scalars
a19 a2, , an;

(P-H) (for Pollard-Hilding) if for each positive real number k,
there are real numbers λx, λ2(0 ^ X{ < min [1; 21"1/fc], i = 1, 2) suc/^ ίfeαt

w II Γ II w

»=i II L IU=i

k !| n

holds for arbitrary scalars a19 , an;

(N) (/or Nagy) if there are real numbers λ', μ,v (0 ^ λ' < 1, 0 ^

v < 1, 0 ^ ^ , μ*^[l- λ'][l - 2;]) s^cfe that
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n

Σ aίχi
2

+ μ
n

s i affii • + v

holds for arbitrary scalars al9 , an.

If k = 1 and λx = λ2 property P-H reduces to

Σ< V <(2.2a)

where λ = Xλ = λ2.

2.3. LEMMA. If {xn} and {yn} are sequences in X with property
P-W, P-H or N then 2.2a holds, with λ (0 < λ < 1) an appropriately
chosen constant.

Proof. That property P-W implies 2.2a is obvious. If {xn}, {yn}
have property P-H, let λ = [max (λx, λ2)]1/fe; if {xn}, {yn} have property
iV let λ =

2.4. THEOREM. Suppose {M{} and {N^ are sequences of nontrivial
subspaces of X and suppose that for each ieω, T{ is a one-to-one
linear transformation of Mi onto ΛΓ{. Suppose further that there
is a λ(0 < λ < 1) such that

(2.4a) + Σ

/or arbitrary a?4 e ilfίf ΐ = 1, , n. Then
( i ) there is a linear homeomorphism T of [Mi] onto [N^ such that
T restricted to Mi equals Tt for each i and such that

(2.4b) [(1 -λ)/(l + λ)] || x || ^ || T(x) \\ £ [(1 + λ)/(l - λ)] || x II

for each x e [ΛfJ;
(ii) {Mi} is a (unconditional) basic sequence of subspaces if and only
if {Ni} is a (unconditional) basic sequence of subspaces.

Proof.

Σ Ti V

+

i.e.,

ι = l
g [(1 + λ)/(l - λ)]
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Σ Xi s [(l + λ)/(i - λ)]

Σ Uxt) < [(1 + λ)/(l - λ)]

The conclusions follow from Lemma 2.1.

2.5. COROLLARY. Suppose {M{} and {N^ are sequences of non-
trivial subspaces of X and suppose that for each ieω, 7^ is a one-
to-one linear transformation of Mi onto Nim Suppose further that
{Xi} and {Ti(Xi)} have property P-W, P-H or N, for arbitrary x{ e Mi
(observe that since x{ e M{ is arbitrary, x{ and T{(Xi) include the scalar
a{ for each i) then the conclusions of Theorem 2.4 hold. In particular,
if Property P-W holds and {MJ is a basis of subspaces for X, so is

Proof. The first part of the corollary follows from Lemma 2.3
Arsove [1, p. 367] has shown how to prove the other assertion of the
corollary. We repeat the proof for completeness.

Since Property P-W holds there exists a linear operator T from
X into X satisfying || x - T(x) \\ g λ ]] x \\, x eX and such that T
restricted to M{ equals T{. Let A = T — I, where I is the identity
operator. A is continuous at each xeX and furthermore | |Aπ(x)| | S
λw | | sc | | for each xeX and positive integer n. Thus a linear operator
U of X onto X may be defined by U(x) = Σ ϊ = o ( - A Λ ( » ) ) , » e X It
follows that || U(x) || ^ (1 — λ)"1 (| x ((, so £7 is continuous. Given y e X,
let x = U(y). Then y = (I + A)x = T(x) so T is onto X.
is a basis of subspaces for X.

Thus

3. Basic sequences of vectors. If X has a basis of vectors {xn},
then {xn} induces in a natural way a basis of subspaces {AfJ for X.
We have only to define M{ to be the span of the single element Xi
(denoted by 8p(Xi)). From the remarks in the introduction we have
sc = ΣΠ=i/»(#)#* for each xeX, so E^x) —fi(x)Xi. Since h(a) — ax{ is
a linear homeomorphism of the scalar field into X and fi(x) is a con-
tinuous linear functional it follows that E{ is continuous for each ieco
and so {ΛfJ is a Schauder basis of subspaces for X. Thus, for
Schauder bases of vectors, we obtain the following theorems as corol-
laries to the theorems of § 2.
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3.1. THEOREM. Suppose {x^ and {y^ are nontrivial (i.e., ^ ,
y. φ 0, for each izω) sequences in X and suppose there is a
λ(0 < λ < 1) such that

Σ <*<iKi

holds for arbitrary scalars aly , an. Then,
( i ) there exists a linear homeomorphism T of [x{] onto [y{] such
that T(Xi) = y{ for each ieω, and
(ii) {x{} is a (unconditional) basic sequence of vectors if and only
if {Viϊ is a (unconditional) basic sequence of vectors.

Proof. Let Mt = sp(x{) and N{ = sp(y{). Define a linear operator
Ti from Mi onto Nζ by Ti(ax{) = ay{ where a is an arbitrary scalar.

Clearly, Γ< is one-to-one and continuous. 3.1a can be rewritten

(3.1b)

for arbitrary x\ e Mί7 i = 1, , n. The conclusions follow from Theorem
2.4.

Thus in particular, if {xn} and {2/J are nontrivial sequences in X
with property P-W, P-H or N, the conclusions of 3.1 are valid.

We have remarked that if {xn} and {yn} have property P-W and
{xn} is a basis of vectors for X, then {yn} is a basis of vectors for X.
From 3.1 it follows that if {xn} is an unconditional basis of vectors
for X, then {yn} is an unconditional basis of vectors for X.

4. Basic sequences in Banach spaces. From Grinblyum [6] the
following can be derived (a proof is given in [10]).

4.1. LEMMA. Let {MJ be sequence a of nontrivial closed subspaces
in a Banach space X. {Mi} is a Schauder basis of subspace for [M^
if and only if there is a K ^ 1 such that for arbitrary p, q eω,
p ^ q we have || Σ?=i χi II = ^Ίl Σ?=i x< lit for arbitrary x{ e Mif i =
1, •••,«.

4.2. LEMMA. Lei {ikfj δe α sequence of nontrivial closed subspaces
of a Banach space X. {M{} is an unconditional Schauder basis of
subspaces of [M{] if and only if there is a K Ξ> 1 such that for
arbitrary finite sets of positive integers F, Ff with FcF' we have

F Xi II ^ K\\ Σ < e j . , Xi II, for arbitrary xi e Mi9

4.3. THEOREM. Suppose {Λf<} and {iVJ are sequences of closed
nontrivial subspaces of a Banach space X.
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(1) If there is a λ(0 < λ < 1) such that for an arbitrary finite set
of integers Ff and arbitrary y{ eNi9 ie F', there exists xt e Miy ie F'
such that

(4.3a)
iβF

holds for arbitrary FczF' then {N{} is an unconditional (Schauder)
basic sequence of subspaces if {M{} is an unconditional (Schauder)
basic sequence of subspaces;
(2) if there is a λ(0 < λ < 1) such that for arbitrary qeω and
arbitrary y19 , yq, yi e Nif i = 1, , q there exist xl9 , xq, xi e Mi9

i = 1, , q such that

(4.3b)

holds for all p ^ q then {iVJ is a (Schauder) basic sequence of
subspaces if {Mi} is a (Schauder) basic sequence of subspaces.

Proof. We prove (2). The proof of (1) is analogous using Lemma
4.2 instead of 4.1.

Suppose {M^ be a basis of subspaces for [M^. By Lemma 4.1
there is a K ^ 1 such that

We have

P

< K ^ q .

7 i \iji «̂ ί
i=l

V

i=l

and from (4.4b) it follows that

Also

Thus we have

q

i=l

- λ i=l

1 + λ
1 - λ

— λ
Σffc

Thus by Lemma 4.1, {iVi} is a basis of subspaces for [N{].
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4.4. COROLLARY. Let {̂ } and {τ/J be non-trivial sequences in a
Banach space X.
(1) If there is a λ(0 < λ < 1) such that for an arbitrary finite set
of indices Ff and arbitrary scalars {αj, ie Ff, there exist scalars
{bi}, i e F'y such that

(4.4a)
iβF HO

holds for arbitrary FczF' then {y^ is an unconditional (Schauder)
basic sequence of vectors if {x{} is an unconditional (Schauder) basic
sequence of vectors)
(2) if there is a λ(0 < λ < 1) such that for arbitrary qeω and
arbitrary scalars alf , aq there are scalars bl9 , bq such that

< λ(4.4b)

holds for all p ^ q then {T/J is a (Schauder) basic sequence of vectors
if {%i\ is a(Schauder) basic sequence of vectors.

Proof. Let Mt = sp(xi), N{ = sp(y{) and apply the preceeding*
theorem.

4.4 is a new form of the Paley-Wiener theorem for we no longer
require the coefficients of x{ and ^ to be the same. We could now
define properties similar to properties P-W, P-H and N by merely
asserting the existence of a scalar b{ to replace the coefficient of Xι
in each of the properties defined in 2«2. It is easy to see that these
new forms of properties P-W, P-H and N imply the hypotheses of
corollary 4.5.

It is unknown^to the author whether [xn] is linearly homeomorphic
to [yn] or not.
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