
Pacific Journal of
Mathematics

QUASI-POSITIVE OPERATORS

DALLAS W. SASSER

Vol. 14, No. 3 July 1964



QUASI-POSITIVE OPERATORS

D. W. SASSER

l Introduction* The classical results of Perron and Frobenius
([6], [7], [12]) assert that a finite dimensional, nonnegative, non-nilpotent
matrix has a positive eigenvalue which is not exceeded in absolute
value by any other eigenvalue and the matrix has a nonnegative
eigenvector corresponding to this positive eigenvalue. If the matrix
has strictly positive entries, then there is a positive eigenvalue which
exceeds every other eigenvalue in absolute value, and the correspond-
ing space of eigenvectors is one-dimensional and is spanned by a vector
with strictly positive coordinates. Numerous generalizations of these
results to order-preserving linear operators acting in ordered linear
spaces have appeared in recent years; a short bibliography is included
at the end of this paper. In this paper a generalization in a different
direction is obtained which reduces, in the finite dimensional case, to
the assertion that the Perron-Frobenius theorems hold if it is only
required that all but a finite number of the powers of the matrix
satisfy the given conditions. The principal results are theorems of the
Perron-Frobenius type which are applicable to any compact linear
operator (the compactness condition is weakened somewhat), acting in
an ordered real Banach space J3, which satisfies a condition weaker
than order-preserving. In addition, the results apply to the case when
the "cone" of positive elements in B has no interior.

2* Preliminaries* Throughout the sequel, B will denote a real
Banach space with norm || | |. The complex extension of B, B, is the
complex Banach space B = {x + iy | x, y e B} with the obvious definitions
of addition and complex scalar multiplication and the norm in B is
II ff + ί# II = sup*? || cos θ x + sin θ y ||. If T is a (real) linear operator
on B into B, the (complex) linear operator T on B into B is defined
by T(x + iy) = Tx + iTy. T is bounded if and only if T is bounded,
in which case | | J Γ | | — | | T | | . The spectrum, σ(T), and the resolvent,
p(T), are defined to be the corresponding sets associated with the
operator f. We denote the spectral radius of T by ττ, ττ —
l i n w ]| T * | r = supλ6τ(r) I λ | (provided || Γ | | < oo).

In all of our results there will be a basic assumption that the
linear operator under consideration is quasi-compact, a notion which
we will now define. A bounded linear operator T is compact (also
called completely continuous) if each sequence Txl9 Tx2, , with
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1030 D. W. SASSER

II %i II ^ 1, i = 1, 2, , has a convergent subsequence. T is quasi-
compact if there exists a positive integer n and a bounded linear oper-
ator V such that Tn — V is compact and r F < r^.1 There are a number
of properties possessed by quasi-compact operators some of which we
state now without proof.2 If Xoeσ(T) and |λof = rΓ, then λ0 is an
isolated point in σ(T) and is in the point spectrum, i.e., (λo7— T) is
not one-to-one. The resolvent operator, R{X, T) = (XI — T)*1, exists-
in a neighborhood of λ0 (excluding λ0) and, in this neighborhood,,
R(X, T) has a Laurent series expansion of the form

ϊ1) + Σ ( λ ~ λo)
fcΛ(λo, Γ)

k0(λ - χoy

where Ak(X0, T) is a bounded linear operator and the series on the*
right is convergent in the uniform operator topology. The integer
n(X0) is the index of λ0, i.e., n(X0) is the smallest integer n such that
{x I (X0I - ΐγ+1x = 0} = {x I (λ0/ - T)nx = 0}. P(λ0, T) is a projection
onto the finite dimensional space {x \ (X0I — f)n{λo)x = 0}. The minimal
property of n(X0) implies that (X0I - T)u(λo)-1P(λo, T) Φ 0.

We recall that for an arbitrary bounded linear operator, the resolv-
ent R(X, T) = (XI - Γ)-1 is an analytic function of λ for Xep(T) and
the expansion R(X, T) = ΣΓ=o(l/λ)*+1T* is valid for | λ | > rτ.

3* Quasi-positive operators* A cone in B is a convex set K
which contains Xx for all λ ^ 0 if it contains x. if is a proper cone
if x G if and —xeK imply a? = 0. A cone if induces an ordering ^ in
B with a? Ξ> 2/ if and only if x — ye if. This transitive ordering
satisfies

( 1 ) if x ^ y, u ^ v, then a; + u ^ ?/ + v,
(2) if a? Ξ> 1/ and λ ^ 0, then Xx ^ λ̂ /, and
( 3 ) x ^ y iί and only if — # ^ — a?.

If the cone is proper, then the ordering satisfies, in addition,
( 4 ) if x Ξ> y and y ^ x, then x — y.

We will use the notation x> y to denote x ^ y, x Φ y. Associated
with a cone if is a closed cone if+ in the conjugate space B* of con-
tinuous, real-valued, linear functions on B, consisting of those x* e B*
with the property that a;*(a?) ^ 0 for all x e K. if+ is a proper cone
if and only if the linear space spanned by K is dense in B (a set with
this property is called fundamental). This is an easy consequence of
the Hahn-Banach theorem on the extension of linear functionals. We
will use the notations x* ^ y* and #* > y* to denote x* — y* e K+

1 Note that a compact operator is quasi-compact if and only if it has a positive
spectral radius.

2 For details, see Yu. L. SmvΓyan, Completely continuous perturbations of operators,.
Amer. Math. Soc. Translations 10, 341-344.
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and x* — y* e K+, x* Φ y*, respectively. An element x > 0 (x* > 0)
will be called strictly positive if x*(x) > 0 for all x* > 0 (x*(x) > 0
for all x > 0).

The following theorem is a characterization of a closed cone and
its interior (when the latter is nonvoid) in terms of K+. The proof
may be found, for example, in [11] (Theorem 1.3 and its corollaries,

m. 16).

THEOREM 1. Let K be a closed cone in B. Then xe K if and
•only if x*(x) ^ 0 for all x* Ξ> 0. If K has a nonvoid interior, then

(1) x is in the interior of K if and only if x is strictly
positive and

(2) for each x on the boundary of K there exists an x* > 0
such that x*(x) = 0.

COROLLARY. If K is a closed proper cone, K+ is a total set of
functionals, i.e., for each x Φ 0, xe B, there exists x* > 0 such that
x*(x) Φ 0.

Proof. Since either x$K or —x$K if x Φ 0, this follows im-
mediately from Theorem 1.

A linear operator T on B into B will be called positive with re-
spect to a cone K if TK ϋ K. In the absence of ambiguity we will
simply say T is positive. In our applications K will be a closed cone
and in this case, in view of Theorem 1, T is positive if and only if
x*(Tx) ^ 0 for all x ^ 0, x* ^ 0. Since Tx ^ 0 if x ^ 0, we have
x*(T2£) ^ 0 and, in general, x*{Tnx) ^ 0 for all n and all x ^ 0, x* ^ 0.
We define T to be quasi-positive if for each pair a? ̂  0, x* ^ 0, there
exists an integer n(x, x*) Ξ> 1 such that x*(Tnx) >̂ 0 if w ^ w(cc, £*).
We define T to be strictly quasi-positive if for each pair 8 > 0, cc* > 0,
there exists an integer n(x, x*) ^ 1 such that x*(Tnx) > 0 if w ^
7&(cc, x*). Finally we define T to be strongly quasi-positive if it is not
nilpotent3 and for each pair x > 0, x* > 0, lim infΛ_oβa?*(Γna?)/|| Tw || > 0.

4* Spectral properties* Throughout this section, K will denote a
closed proper cone in B and K will be assumed to be fundamental. T
will denote a quasi-compact bounded linear operator with spectral
radius 1. This restriction on the spectral radius is for convenience
only and the results given may be interpreted for a general (quasi-
compact) bounded linear operator S with spectral radius rs > 0 by
considering the operator T = (l/rs) S which has spectral radius 1.

3 An operator T is nilpotent if Tn = 0 for some n.
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THEOREM 2. // T is quasi-positive and quasi-compact with
spectral radius 1, then leσ(T) and the index of 1 is not exceeded
by the index of any other point λ e σ ( T ) , | λ | = 1.

Proof. Assume that lep(T). Since ρ(T) is open and R(X, T)
is analytic in X for Xep(T), it follows that the function g(X) —
α*(i2(l/λ, T)x), x>0, x* > 0, is analytic for l/Xeρ(T), in particular
for λ in some neighborhood of 1. Moreover, R(X, T) = ΣΓ=o(l/λ)*+1Γ*
if | λ | > l , hence g{\) = ΣΓ=oλ *+1&*(ϊτ*a0 if | λ | < l . A theorem of
Pringsheim states that if a power series has nonnegative coefficients
and converges in the open unit disk, either 1 is a singularity of the
series or the series has radius of convergence greater than I.4 Clearly
it is sufficient to assume that all but a finite number of the coefficients
are nonnegative. Since x*(Tnx) Ξ> 0 if n ^ n(x, x*), and g(X) is analytic
in a neighborhood of 1, we conclude that the series 2"-oλ&+1x*(Γ/cx)
converges in | λ | < 1 + <? for some δ > 0. By assumption rτ = 1, hence
R(X, T) has a singularity somewhere on | λ | = 1, say at λ0. Since T
is quasi-compact, the expansion

( λ — λ o ) f t

is valid for 0 < | λ — λ01 < S', where n = w(λ0) is the index of λ0

and (λo7 - Γ)%-1P(λ0, T) Φ 0. We may choose x > 0 such that
(λo7 - Γ^-^(λo, Γ)ίc = y Φ 0 since iΓ is fundamental and by Theorem 1
we may choose cc* > 0 such that #*(?/) ̂  0. It follows easily that

g(X) = (λ/λo)
%(l/λo - λ)—Λ(λ) , 11/λ - λ01 < δ ,

where h(X) is analytic and h(l/X0) = α?*(y) ^ 0. Thus g has a pole at
l/λ0 which contradicts the fact that g has a Taylor's series about the
origin with radius of convergence greater than 1. Our assumption
that lep(T) leads to a contradiction, hence leσ(T).

Now let the index of 1 be w. It is easy to see that
lim^x(λ - l)kR(X, T) = 0 if k > n. It follows that for | λ | > l ,
l i m ^ λ - 1)* Σ:, 0(l/λ) r o + 1x*(Tmx) = 0 for every pair x > 0, x* > 0
and clearly this implies l i m ^ (λ - l)k Σ ^ (l/λ)m+1x*(Twx) - 0 if
k > n and j ^ 0. If λo€(τ(T), |λ o | = l and λ0 has index i, then
limλ_λo(λ — λo)

ιi2(λ, T) Φ 0. We may choose x > 0 and x* > 0 such
that limλ^λo(λ - X0)

ιx*(R(X, T)x) Φ 0 and it follows that for | λ | > 1,
limλ^λo(λ - λo)

ι-ΣΞί=i(l/λ)m+1a;*(Γ-a;) Φ 0. Let λ0 = e*, X = peiφ, p>l. If
j ^ n(x,x*), I (λ - \yΣ£=,ilMm+1x*(Tmx)\ £(p-l)ιΣZ=i(VP)m+1**(Tmx)*
The expression on the right in this last inequality tends to zero a&

4 See Titchmarsh, Theory of Functions, pg. 214. Acknowledgement is due here to
S. Karlin for the essence of the proof in Theorem 2 (see [10], Theorem 4).
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p tends to 1 if I > n, hence I ^ n. This completes the proof.

THEOREM 3. If T is quasi-positive and quasi-compact with
spectral radius 1, there exist elements u > 0 and u* > 0 such that
Tu = u, T*^* = u*.δ

Proo/. By Theorem 2, leίj(T). We have

, T) = ±iL^JTlp(lf τ) + ±(X- l)kAk(l, T)

where P(l, T) is a projection onto the finite-dimensional space
{x\(I- T)nx = 0} and (I- Γ)—^(1, T) φ 0. Let Γ = (I- ΓJ ^Pί l , T).
It is easy to see that R(X, T)B g £ for λ real. Since Γ =
limλ_* (λ - l)%Λ(λ, T), it follows that ΓB S £. Also ΓΓ = ΓΓ = Γ.
Let x ^ 0, x* ^ 0 be arbitrary and let JV= w(«, a;*). If λ > 1, we
have x*(TNR(X, T)x) = S^o(l/^)m+1x*(T^+m)x ^ 0. It follows that
for λ > 1, x*{TNΓx) = limλ^ (λ - l)w ΣS=o (l/X)m+1x*(T^+m^) ^ 0. Since
T^Γ = Γ, Γ is a positive operator. We choose v > 0 such that .A; =
% Φ 0. Then % > 0 and Tu = ΓΓv = Γv = u. We choose v* > 0 such
that v*(w) > 0. Letting ^* = Γ*^*, we see that for x ^ 0, t6*(a?) =
(Γ1*!;*)^) = v*(Γx) ^ 0 since v* > 0 and Γ is a positive operator.
Hence u* ^ 0, and since u*(v) - (Γ*v*)(v) - ^*(Γ^) - v*(u) > 0, u* > 0.
Finally, we have ΓT"= Γ which implies Γ*Γ* = Γ*, hence T V =
Tr*(T'*ΐ;*) = Γ*v* = u* which completes the proof.

For strictly quasi-positive operators we obtain stronger results in
the next two theorems.

THEOREM 4. // T is strictly quasi-positive and quasi-compact
with spectral radius 1, then leσ(T), 1 has index one and f has a
representation of the form f = Σ?=i λ Λ + S where λx = 1, | X3 \ = 1,
P] = Pj9 SP3 - P3S - 0, j = 1, 2, , m, P.P, = 0 i/ i ^ i, α^d
rs < 1.

Proo/. By Theorem 2, leσ(T). By Theorem 3, there exists
u* > 0 such that T%* = u* and for x > 0, %*(») = u*{Tnx) > 0 if
w ^ n(x, u*), hence î * is strictly positive. Let the index of 1 be n.
Then Γ = limx^(\ - l)ni2(λ, T) ^ 0 . For λ > 1 and arbitrary x we
have

u*(Γx) - lim (λ - 1)» Σ (lA)*+1w*(Γ*a?) - lim
λ-»i &=o λ->i

= u*(x) lim (λ - l)^-1 = 0
λ

5 71* is the adjoint of T, defined on 5 * by (T*x*)(x) = x*(Tx).



1034 D. W. SASSER

unless n = 1. In proving Theorem 3 we showed that Γ is a positive
operator, hence there exists x > 0 such that Γx > 0 and therfore
<w,*(Γ#) > 0. It follows that n = 1. By Theorem 2, every λ oetf(T),
I λ01 = 1, has index 1 and hence P(λ0, T) = limx_^o (λ — λo)J?(λ, Γ) exists
and is a projection onto the finite dimensional space {x | (Xj — T)x ~ 0}.
Let λx = 1, λ2 , λm be an enumeration of the points in σ(T) with
absolute value 1 and let P3 = P(Xjf T). Since f commutes with R(X, T)
and Pj = limλ_λ j(λ — X3)R(Xf T), it follows that f commutes with P3.
For iΦj we have λ P P, = TP.P, - PiTPj = XjPiPj, hence P^ = 0.
Define the bounded linear operator S by the equation f = Σ?=i λ;P? + &
Since TP3= P3T = X3P3, P] = P3 and P^Py = 0 if iΦj, it follows
that P,S = SP3 = 0. This implies Γw = Σ ^ i ^ P , - + S\ Suppose r^ ^
1. T is quasi-compact, hence Γw = U + V for some n where U is
compact and rv < 1. The operator J7' defined by ϊΓα = C7α? - Σi7=i^]Pj%
is compact6 and Sw = Z7' + F. Therefore S is quasi-compact. Let
λ G σ(S), I λ I = rs ^ 1. Then Sic = Xx for some & e B, a; ^ 0. Since
P3S = SPy = 0, it follows that Γcc = Xx and therefore for some j , X = λ̂
and PjίE = a?. This implies Sx = SPy^ — 0, a contradiction. Therefore
r^ < 1 and the proof is complete.

Before stating our next result, we state the following lemma

which is easily proved.

LEMMA 1. If E is a finite dimensional real Banach space, K
is a cone in E and K is fundamental, then K contains an open set.

THEOREM 5. If T is strictly quasi-positive and quasi-compact
with spectral radius 1, the eigenspace for T corresponding to the
eigenvalue 1 is one-dimensional.

Proof. By Theorem 4 we have T = Σ?=i λ Λ + S where P3 is a
projection onto the eigenspace corresponding to X3, \ = 1, | λ, | = 1,
P3S = SP3 = 0, i = 1, 2, , m and P 4 P y = 0 if ΐ ^ j . By a theorem
of Kronecker, there exists a sequence n19 n2 of positive integers
such that lim^ooX?* = 1, j = 1, 2, , m.7 Since r^ < 1, it follows
that lim^oollS*!! = 0. This implies l i m ^ fΛ* = Σ?=iPy. Let P =
Σ?=i Pi For x e B we have Px = l i m ^ T w ^ , hence PB S B. For
α? ̂  0 and a;* ^ 0, x*(Px) = lim^oo ^ * ( Γ W ^ ) ^ 0, hence P is a positive
operator. Consider the finite dimensional real Banach space PB with
closed proper cone PK. Since K is fundamental in B, it is clear that
PK is fundamental in PB. Therefore, by Lemma 1, PK contains an
open set (open relative to PB). Since T is strictly quasi-positive, every

6 The compact operators from an ideal in the algebra of bounded linear operators
and any bounded operator with a finite dimensional range is compact.

7 See, for example, Hardy & Wright, The Theory of Numbers, Oxford Univ. Press.
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non-trivial fixed vector of T in K is strictly positive. By Theorem 3,
there exists u > 0 such that Tu = u. Let Tx = x, x Φ 0. We wish
to show u and x are linearly dependent and for this purpose we may
assume x£K (otherwise replace x by — x). It is clear that uePK
and x e PB. Let t0 — sup {t \ u + tx e PK}. Since u is in the interior
of PK and x g Pif, it is easy to see that 0 < ί0 < co and that u + £0#
is on the boundary of PK. Hence, by Theorem 1, there exists x* e (PK)+

such that x*(u + tox) = 0. We extend x* to y* e I?* by defining y*(y) =
x*(Py). Since PK g if, it follows that j / * e if+. We have P(u+ίox) =
w + ίoα5, hence #*(w + toa;) = x*(u0 + tox) = 0. Now u + £0^ is a fixed
vector of T which is not strictly positive, hence u + tox = 0, which
completes the proof.

Our next result is a characterization of strongly quasi-positive
operators.

THEOREM 6. If T is quasi-compact with spectral radius 1, then
T is strongly quasi-positive if and only if the following conditions
are satisfied:

( 1 ) leσ(T) and 1 is the only point in σ(T) with absolute value
one,

( 2 ) the eigenspace for T corresponding to the eigenvalue 1 is
one-demensional and is spanned by a strictly positive element u,

( 3 ) there exists a strictly positive element u* such that T*u* —

Proof. In Theorems 3, 4, 5 we have seen that if T is strictly
quasi-positive (in particular, if it is strongly quasi-positive), then
leσ(T) and (2) and (3) hold. There remains to show 1 is the only
point in o{T) with absolute value one. We define the operator P —
Σ ? = I - P Ϊ

 a s ίn Theorem 5 and recall that PB is a finite dimensional
real Banach space with closed proper cone PK containing interior ele-
ments. Let λ = eiθ be a point in σ(T) and let f(x + iy) = eίθ(x + iy)
for some x, y in B, not both zero. It is easy to see that Px = x and
Py = y, hence x e PB and y e PB. At least one of the four elements
x + y, x — y, y — x, —x — y must be not in PK since otherwise
x + y = 0, x — y = 0, hence x = y = 0. Therefore α$ + fo/ g PK for
some choice of a = ± 1 and & = ± 1 . Now choose £ > 0 such that
u + £(α# + by) = v is on the boundary of PK. By Theorem 1, there
exists x* e (PiQ+, %* Φ 0, such that x*(v) = 0. We extend x* to
2/* G if+ : y*(y) = x*(Py). Now choose a sequence of positive integers
nl9n2, ••• such that lim^*, eίΛ*β = 1. It follows that limib_oo T

n*i; = v.
Since rτ = 1, we have || T% || ^ 1 for all n and hence if v > 0,

liminf y*(Tnv) ^ liminf τ/*(T^)/|| T % | | > 0 .
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This is impossible since lim^y*^71^) = y*(v) = 0. Therefore v = 0r

i.e., ax + bj = — (l/t)u. Since f(x + iy) = eίθ(# + iy), it follows that
tt*(ac) + iu*(y) = eίθ(u*(x) + iu*{y)). This implies either e*'β = 1 or
u*(x) = u*(y) = 0. The second alternative is incompatible with
ax + by = — (l/ί)% since w*(w) > 0. Therefore e<β = 1 and the necessity
of (1), (2), (3) is proved.

Now let T satisfy conditions (1), (2), (3). We assume without
loss of generality that u* is normalized so that u*(u) = 1. Define the
bounded linear operator S by Tx — u*(x)u + Sx. As in Theorem 4, it
can be shown that rs < 1. We have Su = Tu — u*(u)u = w — u — 0
and it follows that Γnα = u*(x)u + SΛα;. Since r^ < 1, || Sn \\ ̂  M for
all w and hence || Tn \\ ̂  || u* \\ \\u\\ + || Sn \\ ̂  M' for all n. Moreover,,
Snx —>0 as n —> co for all α?. Hence if x > 0 and #* > 0,

liminf &*(T αO/|| Γ*ll ^ Km inf (u*(x)x*(u) + x*(S

^ u*(a;)ί»*(%)/M/ > 0 .

Therefore T is strongly quasi-positive and the theorem is proved.

THEOREM 7. Assume that B is a lattice8 with respect to the
ordering given by K. Then Theorem 6 is true if "strongly quasi-
positive" is replaced by "strictly quasi-positive."

Proof. Conditions (1), (2) and (3) in Theorem 6 imply T is strongly
quasi-positive, hence, a fortiori, T is strictly quasi-positive. Now
suppose T is strictly quasi-positive. Then leσ(T) and (2), (3) hold.
It is easy to see from the representation of Theorem 4, T = ΣΓ=i ^JPJ +
S, that || Tn\\ is bounded independently of n. Hence, by a theorem
of Krein-Rutman ([11], Theorem 8.1 and corollary), every λ e σ ( T ) ,
I λ I = 1, is a root of unity. It is easily verified that every power of
T is quasi-compact and strictly quasi-positive, hence the eigenspace for
Tn corresponding to the eigenvalue 1 is one-dimensional for all n. If
fx = Xx, I λ I = 1, \n = 1, then Tnx = Xnx = x and it follows that
λ = 1 which completes the proof.

An immediate consequence is the following corollary.

COROLLARY. If B is a lattice, every strictly quasi-positive and
quasi-compact operator is strongly quasi-positive.

The conclusion of this corollary is not true in general as we will
illustrate by an example. Let B be three-dimensional (real) Euclidean

8 I.e., each pair of elements in B has a greatest lower bound and a least upper
bound.
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space, B = {(xlf x2, α3)}, and let K = {(xl9 x2, x3) \ x\ + x\ ^ x\, x3 ^ 0}. If

we interpret "to the right" to mean any direction in which the %
coordinate is increasing, each non-trivial element x* e K+ is represented
by a plane through the origin whose unit normal at the origin directed
to the right lies in K. Let T be a rotation about the x3 axis through
θ radians where θ and 2π are incommensurable. It is clear that
|| Tn\\ = 1 for all n and that TK ^ K. To show that T is strictly
quasi-positive it suffices to consider x* e K+ which is represented by a
plane tangent to K. If p is in the interior of K, Tnp is in the interior
for all n, hence x*(Tnp) > 0. Now let p be on the boundary of K.
There exists exactly one point q which has the same xs coordinate as
p and such that x*(q) = 0. Since 0 and 2π are incommensurable, there
is at most one value of n such that Tnp = qΛ Therefore, x*{Tmp) > 0
for all m sufficiently large and, hence, T is strictly quasi-positive. If
p is on the boundary of K, so is Tnp for all n. We can pick a sequence
nly n2, such that Tn 'cp converges to a point q on the boundary of
K and there exists x* e i£+ such that x*(q) = 0, x* Φ 0. This shows
T is not strongly quasi-positive.
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