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PSEUDO-FRATTINI SUBGROUPS

HOMER F. BECHTELL

1* Introduction* During the current interest in Frattini sub-
groups, Φ{G)9 of finite groups, G, two well-defined characteristic sub-
groups have been overlooked. They are the intersection of the
normal maximal subgroups, R(G), and the intersection of the self-
normalizing maximal subgroups, L(G); in each case one sets R(G) = G
or L(G) = G if the respective maximal subgroups do not exist properly.
This paper examines the properties of these subgroups and introduces
an upper L-series which is defined as Lo = L(G), Lx = [L(G), G], •••,
L3 = [Ly-i, G], ••; its role being analogous to the upper central
series. The terminal member of an L-chain, L*{G), is called an
L-commutator. Whenever L*(G) = 1, L(G) coincides with the hyper-
center of G. In conclusion it is shown that a group having L*(G) = 1
and having all subgroups of G/Φ(G) the direct product of elementary
Abelian p-group is equivalent to a group having each proper sub-
group nilpotent.

It is assumed that the reader is familiar with the definitions and
properties of ascending and descending central series, nilpotent groups,
and Frattini subgroups. Moreover, the following properties (see
Gaschϋtz [2]) will also be used.

PI* If N is a normal subgroup of a group G and N ^ Φ{U), for
a subgroup U of G, then N ^ Φ(G).

P2* If N is a normal subgroup of a group G and T is the
normalizer in G of a Sylow p-subgroup P of N, then G = NT.

P3* If N ^ Φ(G) is a normal subgroup of G, then Φ(G/N) =
Φ(G)/N.

All groups will be assumed finite.

2. Pseudo-Frattini subgroups* A maximal subgroup of a group
is either normal or self-normalizing, i.e., a subgroup which coincides
with its normalizer. Moreover, the two classes remain invariant
under an automorphism of the group.

DEFINITION 2.1. For a group G denote by R(G) the intersection
of the normal maximal subgroups (defining R(G) — G if no normal
maximal subgroups exist), and denote by L(G) the intersection of the
self-normalizing maximal subgroups (defining L(G) = G if no self-
normalizing maximal subgroups exist).
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Clearly R(G) and L(G) are characteristic subgroups and Φ(G) =
R(G)Γ\L(G). One notes that R{G) contains the derived group of G
and that L(G) contains the center of G; the containment need not be
proper.

It is seen that R(G) ^ L(G) implies that G is nilpotent, i.e.,
G = L(G). However, it is possible that L(G) ^ R(G) without imply-
ing that the group is perfect, i.e., G = R(G). Moreover R(G) = 1
implies that G is an elementary Abelian p-group and if L(G) = 1,
then G is centerless. In either case G is a Φ-ΐvee group (a group
whose Frattini subgroup is the identity). For a discussion of the
Φ-ίree groups, one is referred to the papers of Gaschiitz [2] and
Zacher [5].

THEOREM 2.1. For each homomorphism θ of a group G,
( i ) L(G)Θ g L(GΘ),
(ii) R(G)Θ £R(GΘ), and
(iii) Φ{G)Θ ^ Φ{GΘ).

Proof. It is sufficient to note that if K is the kernel of the
homomorphism G, then L(GΘ) corresponds to the intersection of the
self-normalizing maximal subgroups of G containing K. The other
parts follow similarly.

Examples can be found to show that in general equality will not
hold for any one of the parts in Theorem 2,1.

For the group G, denote the terminal member of the descending
central series, the hyper commutator, by D(G) and the terminal
member of the ascending central series, the hypercenter, by Z*(G).

THEOREM 2.2. In a group G

( i ) D(G) £ R(G),

( i i ) Z*(G)£L(G),
( i i i ) L(G)Π[G,G]^Φ(G),
( i v )
( v )
( v i ) [G,G\nZ(G)£Φ(G)9

(vii) Φ(G) = 1 implies L{G) = Z(G) = Z*{G), and
(viii) L(G)/Φ(G) = Z(G/Φ(G)) - Z*(G/Φ(G)).

Proof. Since [G, G] g R(G), (i) is evident. On the other hand
it is known that the hypercenter is contained in each self-normalizing
subgroup and so (ii) results from this. For (iii) note that L(G) Π [G, G] ^
R(G). The normality of L(G) together with (iii) implies (iv), then
(ii) and (iii) imply (v). (vi) is just a consequence of Z(G) ^ Z*(G).
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As for (vii), note that Φ(G) = 1 implies [L(G), G] = 1, L(G) ^ Z(G)
and so by (iii), L(G) = Z(G). Finally (viii) is a consequence of P3,
in the introduction, together with (vii).

It is known that L(G) is nilpotent (see Gaschϋtz [2] and Deskins
[1]) and this can be proven directly. However, the next theorem
permits this and several other known results as corollaries.

THEOREM 2.3. Consider the normal subgroup N of a group G
and denote its hyper commutator by D(N) then either

(i) D(N) = 1 or
(ii)

Proof. Suppose D(N) ^ Φ(G) and denote a Sylow p-subgroup of
N by P for a fixed prime p. Then D(N) P/D(N) is a characteristic
subgroup of N/D(N) and hence normal in G/D(N). This in turn
implies that D(N) P is normal in G. Consequently by P2, in
Section 1, if T is the normalizer of P in G, then G = D(N) P T =
D(N)-T = T, i.e. P is normal in G. So P is normal in iV. This
holds for each prime p and it follows that N is nilpotent, i.e. D(N) = 1.
From this, one concludes either jD(iV) = 1 or D(N)<£Φ(G).

COROLLARY 2.3.1. The following properties are equivalent for
the normal subgroup N of G:

( i ) N is nilpotent,
(ii) N/Np[Φ(G) is elementary Abelian,
(iii) N/Nf]Φ(G) is Abelian, and
(iv) N/Nf)Φ(G) is nilpotent.

Proof. Since N is nilpotent, [N, N] ^ Φ(N) ̂  Φ(G), by PI, and
thus (ii) is a consequence of (i). Clearly (ii) implies (iii) which in
turn implies (iv). Then (iv) implies (i) since D(N) ̂  NΓiΦ(G).

COROLLARY 2.3.2. If S and T are normal subgroups of a group
G and S ^ T such that T/S is nilpotent, then S ^ Φ(G) implies
that T is nilpotent.

COROLLARY 2.3.3. L(G) is nilpotent.

Proof. It is sufficient to apply (viii) in Theorem 2.2.

THEOREM 2.4. A necessary and sufficient condition that a sub-
group H of G be contained in L{G) is that [H, G] ̂  Φ{G).
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Proof. Suppose H is a subgroup of G having [H, G] ̂  Φ(G). If
H^Φ(G) then Φ(G) H/Φ(G) ^ Z(G/Φ(G)) = L(G)/Φ(G) i.e. H ̂  L(G).
Similarly for an arbitrary subgroup of G. Conversely if H ̂  L(G),
then [H, G] < [L(G), G] ̂  Φ(G). This completes the proof.

COROLLARY 2.4.1. Let H be a subgroup of G. Then H^ Φ(G)
if and only if

(i) HSR{G) and
(ii) [H, G] ̂  Φ(G).

Proof. By the theorem, [if, G] ̂  Φ(G) implies if g L(G) and
then (i) leads to H ̂  0(G). The converse is evident.

In the group G = {α, 6 | α5 = δ4 = α3δαδ3 = 1}, 0(G) = 1 whereas
φ({b}) = {62} nfe 1. So in general 0(iϊ) is not necessarily contained in
Φ(G) whenever H is an arbitrary subgroup of G. Of course, if H
is normal in G, then Φ{H) is contained in Φ(G) upon application of PI*

THEOREM 2.5. If His a subgroup of G, tλew 0(iϊ) ^ i2(ίί) <; i2(G).

Proof. One must show that E(H) ^ J2(G). This is trivial if
JB(G) = G. Hence assume iϋ(G) Φ G and let if denote a normal!
maximal subgroup of G. Then either H ̂  N and J?(JBΓ) ̂  JV, or
H^LN. For the latter note that Nf]H is a normal maximal sub-
group of H. Therefore R(H) ^ Nf]H^N. Combining the two
cases one obtains R(H) ^ R{G) for an arbitrary subgroup H of G
and the result follows.

COROLLARY 2.5.1. A necessary and sufficient condition that
Φ(H) S Φ{G), for an arbitrary subgroup H of G, is that [Φ(H), G] S
Φ(G).

Proof. Combine Theorem 2.5 with Corollary 2.4.1.

A counterexample to an analogue for L(G) and L(N) for a sub-
group N of a group G is provided by the symmetric group on three
symbols, Ss, L(SS) — 1 and L(A3) = AS9 A3 the alternating subgroup.
Moreover for each subgroup H of order two, L(H) = H Φ 1. Con-
sequently there is no proper subgroup T of S3 for which L(T) <;
L(S3).

3» L-series* This section will be given to defining an L-seriea
and to the development of its properties.



PSEUDO-FRATTINI SUBGROUPS 1133

DEFINITION 3.1. For a group G
( i ) an L-series is a series L(G) = B0}z J5X ̂  I?,- ̂  such

that J5, is normal in G and B</B<+1 ^ Z(G/Bi+1) i.e. [£*, <?] ̂  Bi+1 for
i = 0,1,2, •••,

(ii) an upper Lserίes is a series L((?) = Lo ^ Lx ^ Ξ> L, ^
in which L3 = [Ly-i, Or], for i = 1, 2, , and

(iii) a Zower L-serίes is a series 1 = 3Γ0 ^ ^ί ^ Zj ^ in
which Zj/Zj-! = ZiG/Zj-i), for j = 1,2, , (i.e. a lower L-series is
precisely the ascending central series.)

The terminal member of the lower L-series is the hypercenter
Z*(G) whereas we will call the terminal member of the upper L-series
the L-commutator and designate it by L*((?), i.e. there exists an
integer j such that Lo > Lx > > Lό> L*(G) = Lj+1 = Lj+2 = .

The immediate properties of the L-series are the following:
( i ) The L-series are a normal series.
(ii) The upper and lower L-series are a characteristic series.
(iii) An upper L-series coincides with the descending central

series if and only if G is nilpotent.
(iv) For an integer j , j ^ 1, L, ^ Φ(G). Since Lό ^ [Φ(G)9 G] ^ Φ(G),

j ^ 1, the result follows.
As for the L-commutator, one has these properties:
( i ) L*(G)£Φ(G).

This follows since Lά ^ Φ{G) for all integers j ^ 1 and in the case
L*(G) = L(G), L(G) - Φ(G).

(ii) L*(G) is nilpotent.
(iii) L*(G) contains no subgroup H, H normal in G, such that

L*(G)/H ύ Z(G/H).
(iv) For a homorphism G of a group G, {L*{G)Θ g L*(G/?).

It is sufficient to note that (L(G)Θ ^ L(GΘ).
Then by the same method of proof as used in showing the

relationship between the elements of the central series of a nilpotent
group with the elements of either the descending or ascending central
series (see M. Hall, [3], p. 151) one has

THEOREM 3.1. In a group G possessing an Lserίes L(G) =
B 0 ^ * i ^ * * = l, L<£Bif i = 0,l, ••-,& and Bk.^Zh j =
0,1, . . . , f c - l .

COROLLARY 3.1.1.
( i ) If there exist integers j and k such that L3 ^ Zk, then

L(G) = Z*(G) and k = n - j where Ln = 1.
(ii) If L(G) = Z*(G), the upper and lower L-series have the

same length.
(iii) L(G) = Z*(G) if and only if L*(G) = 1.
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COROLLARY 3.1.2. The following statements are equivalent for
the group G.

( i ) An L-series of G terminates with the identity of G.
(ii) The lower L-series of G terminates with L(G).
(iii) L (G) = 1.

Note that (i) of Corollary 3.1.1 cannot be extended to include
Zk < Lj for the same pair of integers j and k in order to obtain a
similar result. Even if Z*{G) < L*(G), all that can be said is that
G/Z*(G) is centerless. For an example consider the group G =
{α, 61 α9 = δ2 = baba = 1}. In this group Φ(G) = L(G) Φ 1 whereas
Z(G) = Z*{G) = 1.

As is known, the hypercenter can be defined as the intersection
of the self-normalizing subgroups and this can even be improved to
the intersection of the normalizers of the Sylow p-subgroups of the
group G for each prime p | ord (G). Hence on the basis of Corollary
3.1.1 it appears that the latter may be the best possible "intersection
property" of Z*(G) since Z* = L(G) if and only if L*(G) = 1.

THEOREM 3.2. If N is a normal subgroup of a group G having
L*(G) = 1, then L*(N) = 1.

Proof. If -ZV* is nilpotent, the result is trivially true. Since G
possesses an L-series, then L(G) — Z*(G). Thus if Φ(N) — 1, then
L(N) = Z{N) = Z*(N). On the other hand since Φ(N) ̂  Φ{G) S
Z*(G), the element x of order p in Φ(N) commutes with all elements
of G of order prime to p and so with those in N. This is because
x is an element of the hypercenter Z*{G) and hence xeZ*(N).
Therefore Φ(N) ̂  Z*(N) which in turn implies Z*(N) = L(G).

COROLLARY 3.2.1. If N is a normal subgroup of G and L(G) =
Z*(G), then L(N) = Z*(N).

As the symmetric group on three symbols clearly indicates, the
existence of an L-series does not imply L(N) <£ L(G).

Moreover the example preceding Theorem 3.2 points out that the
converse is not true.

THEOREM 3.3. A necessary and sufficient condition that L*(G) — 1
for a group G is that for each prime p, p \ ord (G), the p-component
P of Φ(G) commutes with the elements of the Sylow q-subgroups Q
of G, pφq.

Proof. Clearly if L(G) = Z*(G), the relationship exists from out
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of the properties of the hypercenter. On the other hand, suppose
that the p-components of Φ(G) commute with the elements of the
Sylow g-subgroups of Q of G for p Φ q. Then again Φ(G) S Z*(G)
which implies Z*(G) = L(G).

4. Property (NN). Since simple groups have L*(G) = 1 trivially,
it is evident that in general this property may not alone enlighten
us on further structural properties of the group unless additional
conditions are included. Analogous to a nilpotent group, let us define
a group property as follows:

DEFINITION 4.1. A group G has property (NN), G e ( M ) , pro-
vided that

(i) L*(G) = 1 and
(ii) each subgroup of G/Φ(G) is the direct product of elementary

Abelian p-groups.

It should be noted that L*(G) — 1 does not alone imply nilpotency
of the proper subgroups, e.g. the alternating group on five symbols.
Nor does the condition that each proper subgroup of G/Φ(G) is the
direct product of elementary Abelian p-groups imply the same result,
e.g. the group G = {α, b | α9 = δ2 = ba ba = 1}.

THEOREM 4.1. A group G has property (NN) if and only if
each proper subgroup of G is nilpotent.

Proof. The theorem is obviously true when G is nilpotent and
so for the remainder of the proof we will assume that G is not
nilpotent.

First suppose G e (NN) and let H be a proper subgroup of G.
Then consider the quotient Φ(G)-H/Φ(G) = H/Hf]Φ(G). If H - Φ(G) =
G one has G — H and hence a contradiction to H being a proper
subgroup of G. Thus H/HnΦ(G) Abelian implies that [H, H] is
contained in Φ(G). Thus if Hj represents a term in the descending
central series of H, H2 = [[H, H], H] ^ [L(G), G] = Lx. Assume Hj+1 =
[Hjf H] < Lj for j ^ 1. Then H3+2 = [Hj+1, H] < [Lj9 G] = Lj+1. So
by induction, the descending central series of H exists which implies
the nilpotency of H.

On the other hand suppose each proper subgroup of a group G is
nilpotent. The structure of these groups is known (see P. Hall and
Higman [4]). Such a group is of the form G — QP, Q normal in G,
P cyclic of prime-power order, Φ(P) ̂  Z(G), and Q either an ele-
mentary Abelian g-group, q Φ p, or Φ(Q) — Z(Q) = [Q, Q], Q a g-group,
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p Φ q with both having P acting irreducibly on Q/Φ(Q), i.e. [P, Q] ==
Q. Then since Φ(P) ^ Φ(G), it follows that G/Φ(G) has each proper
subgroup the direct product of elementary Abelian ^-groups. More-
over since Φ(G) = Φ(Q) (g) Φ(P) = Z(G), then L(G) = Z*(G) which
implies L*(G) — 1.
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