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BOUNDARY KERNEL FUNCTIONS FOR DOMAINS
ON COMPLEX MANIFOLDS

L s BϋNGART

1* Introduction* Let D be a domain with piecewise differentiate
boundary on a complex manifold X on which the holomorphic functions
separate points. L%dσ) is the space of square integrable functions on
the boundary ΘD of D with respect to a surface measure dσ on dD
associated with a given riemannian metric on X. We can consider the
space H(D) of holomorphic functions on D as a subspace of L2(dσ).
Let H* be the closure of H(D) in L\dσ).

The restriction mapping from H(D) into the space H(D) of holomo-
rphic functions on D is shown to extend to a continuous mapping
i: H*—\H(D) (Lemma 4.1). A kernel k: D—>H2 is associated with this
mapping; k is conjugate holomorphic, and k — i o k is a holomorphic
kernel function on D x D* where D* denotes the space D with the
conjugate structure (Theorem 5.1). In § 6 we discuss the special case
of Reinhardt domains in Cn, and in § 7 an attempt is made to generalize
Theorem 5.1 to domains on analytic spaces.

The author would like to thank E. Bishop for the hint that the
results of this paper could as well be proven for complex manifolds on
which the holomorphic functions separate points rather than only for
Stein manifolds as was originally done, with only minor changes in
the proofs.

2* Nowhere degenerate mappings* In the following X will
always be an analytic space of pure dimension n. We assume that X
is "countable at infinity" i.e. that it can be covered by a countable
number of compact sets. We also assume that the holomorphic functions
on X separate points.

Under these hypotheses there are nowhere degenerate holomorphic
mappings from X into ^-dimensional complex affine space Cn; a nowhere
degenerate mapping is a map f:X—> Cn such that for any peCn,
{f(x) = p} is a discrete set on X. In fact it is proved in [1] that the
set of all nowhere degenerate holomorphic mappings from X into Cn

is dense in the Frechet space of all holomorphic mappings from X
into Cn (Theorem 1 in [1]).

If f:X—>Cn is a holomorphic nowhere degenerate mapping then
each point x e X has a neighborhood Ux with the following property:

f(Ux) is a polycylinder in Cn with center f(x); f is a proper
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mapping from Ux onto f{Ux)9 and there is a proper subvariety
Δx of f(Ux) such that Ux - f"\Ax) ~^f(Ux) - Δx is an sxsheeted
covering map; the set f~\Ax) Π Ux is closed and nowhere dense
in Ux

This can for instance be verified as follows. Let j be an embedding
of a neighborhood U'9 of x into some Ck; (/, j) gives an embedding of
U'Λ into Cn x Ck and (/(#), j(x)) is an isolated point of (/, j) (U'9) Π {f(x)} X
Ck so that the assertion is a well known fact (see for instance the
discussion in [5, section 2]).

LEMMA 2.1. Let U be a relatively compact open subset of X and
yeU. There is a nowhere degenerate holomorphic mapping π:X—>
Cn such that {x e X: π(x) — π(y)} does not contain any point of the
boundary dU of U.

Proof. The set of all holomorphic mappings g:X-+Cn with
{x e X: g(x) = g(y)} Π 9Z7= Φ is clearly open in the space of all holomor-
phic mappings X—>C\ Thus, by the previous remarks, it suffices to
prove that this set is not empty.

Let Q be a relatively compact open subset of X containing the
closure Ό of U. Let / be any nowhere degenerate holomorphic mapping
from Xinto Cn. For simplicity we assume that f(y) = 0. Let hl9 * ,hk

be holomorphic functions on X vanishing on f~\0) (Ί U such that
{hx = = hk — 0} Π 0U = Φ; this can be done since the holomorphic
functions on X separate points. Notice that the difficulty lies in proving
that one can choose n such functions.

Let S = Q x Cnk and denote the projection of S on Q by q and
the projection onto Cnk by p. Define the functions

Fi(x91) = Mx) + Σ t.Mx)

holomorphic on S. We want to show that we can choose t in such a
way that {Fά(x, t) = 0,1 ^ j ^ n} does not meet dU.

There is a neighborhood N of 0 in Cnk such that for each t e N

{ί\(ίc, * ) = . . . = Fn(x, ί) = 0}ΠQ

is finite because there are.no compact subvarieties on X.
Let B = dUxCnkc:S and V = {(x, t): F,(x, t) = 0,1 ^ j ^ n}.

We show that 0 is not an interior point of p(B Π V). We prove in
fact that N Π p(B Π V) is of first category.

q: V-+ Q is certainly locally open at every point (x, t) with h^x) Φ 0
for some i, thus in particular at every point of B Γ) V. Since
q(B Π V) c ΘU, B Π V cannot contain interior points. Hence B f] V
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is a closed nowhere dense subset of V. p~\t) Π V is finite for all te N.
Therefore p~\N) Π V is of pure dimension nk and every point
z e p~\N) Π V has a neighborhood Wz such that p: Wz —» p( Wz) is a
proper mapping onto a neighborhood of p(z) which is a covering map
off some proper sub variety of p(Wz).

Thus p(B Π Wz) is closed and nowhere dense in p(Wz). Therefore
p(B Π V) Π N is of second category since p~x{N) Π V is second countable.
This completes the proof.

3* The martinelli integral formula* For z, ζ e Cn, z Φ ζ, let

(3.1) aζ =
7=1 I « - ζ |2w '

where

Oj ~ dzx /\dzx /\ Λ dzj A [dzj] A Adzn Adzn

the term in brackets being left out
The Martinelli formula ([2], [12]) asserts that

(3.2) Λ C ) = ( fat, ζeD
J9JD

for every function / holomorphic in a neighborhood of the closure D of
the bounded domain D in Cn with piecewise differentiate boundary ΘD.

That D has piecewise differentiate boundary shall mean the
following:

There is a finite simplicial complex K in Cn with these properties:
( 1 ) Every simplex seK is a C°° mapping from a neighborhood

of a standard simplex Δk in some i2&, k ^ 2w, into Cw which yields a C~
embedding of the closure of Δk into Cn.

( 2 ) The support of K is D.
( 3 ) dD = dD and there is a subcomplex JBΓ0 of K whose support

is ΘD.
We consider the 2w-dimensional simplices in K with the orientation

induced by Cn and the (2n — l)-dimensional simplices in Ko with the
natural orientation that they carry as boundaries of 2^-dimensional
simplices in K i.e., they are oriented in such a way that the positive
normal points into the domain D.

The integration in (3.2) is then to be interpreted as integration
over the chain ΣC/ where C/ are the (2n — l)-dimensional simplices
in Ko, and the integral is independent of the particular choice of
the complex K.

Suppose now X is a complex manifold of pure dimension n and D
a relatively compact domain in X with piecewise differentiate boundary
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dD. Suppose that the holomorphic functions on X separate points.
Let π be a nowhere degenerate mapping from X into Cn. Let aζ, ζeCn

be the (n - l)-form on Cn - {ζ} defined by (3.1). For ye C we denote
the form π*ax(v) on C - {π^πiy)} by βy.

LEMMA 3.1. Suppose π~λπ{y) C]dD = 0 . Then for every function
f holomorphic in a relatively compact neighborhood U of D,

(3.3) Σ At) = \ fβy

counting multiplicities in the summation.

Proof. Choose neighborhoods Pu , P8 of the points y = tl9 , t8

in π-Ύπ{y) Π D such that P* Π Ps = 0 for i =£ i, P i c A ^(P,) = π(P0
and TΓ^iPJ Γϊ D = P1[J U P8; shrinking the Pά if necessary we
may assume that there is a nowhere dense subvariety Δ of π{P^ such
that π is biholomorphic at every point of Pά — TΓ" 1^), 1 ^ i ^ s.

Let yf be any point in Px with 7r(̂ /') g Δ. Choose neighborhoods
Ulf •••, Z7̂  of the points 2/' = t[, •••, t^ in π-χπ{y') Π 1> such that
E/f Π Uj — 0 for i =̂  i, C/j c D, and TΓ is biholomorphic on U3 , 1 ^ i,

j ^ /. We can modify a triangulation of D in such a way that there
are triangles Dl7 , D' such that ίj is an interior point of Zλ,- and

A c ^ , l ^ i ^ ^ Let D' = J? - A U U ̂
For any function g holomorphic in an open set W in Cn, d(gaζ) = 0

on W — {ζ} Therefore d{fβy,) = 0 in a neighborhood of any point in
U — π~xπ{yf) at which TΓ is biholomorphic. Since the set of such points
is open and nowhere dense in U — π~ιπ(yf), d{fβy) = 0 o n U — π~xπ{yf).
Thus by Stokes' theorem

(3.4) f fβy, = £\ fβ,. = Σ>Atϊ).
JdD 1 JΰDj 1

The left hand side of (3.4) is a continuous function of yr e Px and so
is the right hand side. Since the equality (3.4) holds on the dense
subset Pi — τr\Δ)9 it holds on all of P1# This completes the proof.

Now we make use of a device of [1] (Theorem 7) to write Lemma
3.1 in a more general form.

Let w be a holomorphic function on U. Define

w(x, y) = (w(x2) - w(y)) (w(x8) - w{y))

where s is the number of sheets of D over π(x) and π~xπ{x) ΓiD =
{x — χl9 χ2f . . . f χ8} counting multiplicities. w(x, y) is clearly holomorphic
in y. It is also holomorphic in (xf y) in a neighborhood of every point
{x\ y°) with π^πix0) Π OD = 0 . One writes
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w(x, y) = Σ± a{(x) (w(y)Y

where the ê  are elementary symmetric polynomials of {w(x2), , w(xs)}.
Every such polynomial is a linear combination of an elementary sym-
metric polynomial ω of {w{x^, •••, w(x8)} and the product of w(x) =
w(Xχ) with a polynomial a^x) of lower order. Thus if each ω is
holomorphic, one can prove by induction that the a{ are holomorphic.
As before let P = P± U U P8 be a neighborhood of π^πix0) Π D
such that π is a covering map off some proper subvariety Δ in π(P)
and π^πiP) f] dD = 0 . ω can then be considered as a function on
π(P). ω is holomorphic on π(P) — J, hence ω is holomorphic on all of
π(P) by a well known theorem on removable singularities (see for
instance [13]).

LEMMA 3.2. With the notation of Lemma 1.1

t
where w(y) = w(y> y) is holomorphic in a neighborhood of y*

Proof. By Lemma 3.1

where π~Ύπ{y) Π D — {ylf , y^} (counting multiplicities). Since
w(y> yj) = 0 for yd Φ y, the lemma is proved.

4* ZP-spaces* Let X be a complex manifold of pure dimension
n such that the holomorphic functions on X separate points. Let ds2

be a riemannian metric on X. Assume D is a domain on X with piece-
wise differentiate boundary. Let dσ be the volume element on dD
associated with the metric induced by ds\ L2 = L\dσ) is the Hubert
space of square integrable functions on dD. The space H(D) of functions
holomorphic in a neighborhood of D is in a natural way a subspace of
L2, the natural map fΓ(jD)~>L2 being infective by the maximum
principle. Let H2 = H\dD) be the closure of H(D) in ZΛ

Consider now the restriction map r: H(D) —• H{D) from £Γ(5) into
the space H(D) of holomorphic functions on D. H(D) is a Frechet
space in the topology of uniform convergence on compact sets. We
would like to extend r to a continuous mapping from H2 into H(D).
For this it suffices to prove the following lemma.

LEMMA 4.1. The restriction mapping r: H{D) —> H(D) is continuous
if we consider H(D) with the topology induced by ZΛ
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Proof. Suppose / converges to 0 in H(D). Let x e D. We show
that / converges to 0 uniformly in some neighborhood of x.

According to Lsmma 2.1 we can find a nowhere degenerate mapping
π from X into Cn such that π~λπ{ U) Π dD = 0 for some neighborhood
Ua D of x. By Lemma 3.2,

<4.1) 0(y) [ / W = ( Pw(v, -)βy for ye U.

If we can prove that the integral on the right of (4.1) converges
uniformly to 0 in a neighborhood of x9 then / will also converge
uniformly to 0 in a neighborhood of x. This can be proved as follows.
By the closure of modules theorem [8] [15], w generates a closed ideal
w(H(W)) in H(W) for every open subset W of X Thus by the open
mapping theorem, the mapping H( W) —• w(H( W)) which is multiplication
by w is a homeomorphism whenever it is one-to-one; but for every
point in U there is such a neighborhood and a suitable w since the
functions on X separate points. In fact, we can choose w in such a
way that w is different from zero in some neighborhood of a given
point in U and thus avoid the use of the closure of modules theorem.
However, the above argument using the closure of modules theorem
will generalize to analytic spaces that we are going to discuss in §7.

Thus we have to concentrate on the integral on the right of (4.1).
w(y, •) is uniformly bounded on dD for y in a neighborhood of x, so
we need only show that

<4.2) \ I/Π/3J

converges to 0 uniformly on some neighborhood of x. Or it suffices
to prove that for any triangle Δ in the triangulation of dD,

<4.3) \jf\2\βy

•converges to 0 uniformly in a neighborhood of x. There is a submanifold
J l ί D i containing Δ as an open subset, and M has global coordinates
tl9 , ί2%_! (M is the diffeomorphic image of a neighborhood of a
standard (2n — l)-dimensional simplex). Since βy depends continuously
on y if y is restricted to a suitable neighborhood of x we have an
estimate

<4.4)

for y in a neighborhood U' c U of x. Let da = g(t) dtx Λ Λ
There is a constant c' > 0 such that #(£) > c' for ί e J. Thus
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( 4 . 5 ) c' \ \ f \ * d t 1 Λ ••• Λ d t 2 n ^ ^ \ \ f f g d t , Λ ••• Λ d t ^ ^ \\f\\\

where | | / | | 2 is the norm of / in IΛ This shows that the right hand
side of (4.4) converges to 0 as / tends to 0. This completes the proof.

We say that feH2 possesses a "holomorphic continuation" / = i(f)
into D. Though it seems plausible that two different elements of H2

have different holomorphic continuations into D (as is the case if D is
the unit disc in C1), / see no way of proving this in this general setting.

5* The boundary kernel function* Let f)w be the continuous
linear functional on H(D) which is evaluation a t w e H{D), ηw(f) = f(w).
r]w o i is a continuous linear functional on H*f i.e. rjw is an element of
the dual H2 of H2. We do not identify H2 with H2 but think of H2

as the space H2(dD*) where D* is the domain D considered as a subset
of the space X*, which is the complex manifold X with the conjugate
analytic structure. Thus H2 are the conjugates of the functions in
iϊ2, and the pairing between elements in H2 and H2 is given by

<f,9>= \ f9dσ , feH\geH2

Let K^ηwoie H2. For feH2 we have </, kw> = i(f) (w); thus </, A?w>
is holomorphic in w, or kw defines an H2 = valued holomorphic function
k on D (cf. for instance [10] or [4, Theorem 4.1]).

Suppose now hl9 h2, is an orthonormal base for H2, then hu £,
is the dual orthonormal base for H2 and

tow — 2J \ΐim9 /cw/ hm ,

where the sum converges uniformly on compact sets in D because of
the continuity of k. Let k be the function (z, w) —> i(k^) (z) defined on
D x !>*, k = <kw, kzy. Then

where the sum converges uniformly on compact subsets of D x D*
because of the continuity of i. Hence k is holomorphic on D x Z?*..
We recollect:

THEOREM 5.1. Let D be a domain with piecewise differentiable
boundary on a complex manifold X. We assume that the holomorphic
functions on X separate points. Let dσ be the surface element on dΌ
associated with a riemannian metric on X. H2 is the closure of H{D)
in L2(dσ). There is a natural continuous mapping i: H2 —> H(D) that
extends the restriction mapping Hφ) -^ H(D). There is a conjugate*
holomorphic Unvalued function k on D such that
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= ( fKdσ,

i(]c) — k is a holomorphic function on D x D* where JD* is the space
D with the conjugate structure. If {hm} is an orthonormal base for
H2 then

k = Σi(hm)(z).i(hm)(w),

and the sum converges uniformly on compact subsets of D x D*.

Similar considerations have been made by various authors, especially
by S. Bergman and G. Szego (cf. the introduction in [11]). However,
Theorem 5.1 seems to be the first general result concerning the
convergence of the kernel function. It has been obtained before in
the thesis [11] for the special case of holomorphically convex complete
Reinhardt domains with smooth boundary in C2. We are now able to
extend some of the results of [11] to arbitrary dimensions.

6* Boundary kernel functions for certain Reinhardt domains*
Recall that a Reinhardt domain in Cn is a relatively compact connected
subdomain D of Cn such that for every ze D, t z — {t^zXy , tn>zn)
belongs to D for t an element of the torus Tn — (eίφi, •••, eiφn), 0 ^
φj < 2π.

In the following we assume always that D is a Reinhardt domain
with piecewise smooth boundary satisfying

I z° e dD and z)x = = z°jjc — 0 for certain j i implies

that there are ze D arbitrarily close to z° with

a* = * = zh = °

Let elf , em be those coordinate functions zά for which {z3- = 0} Π D =
0 , and em+1, , en those for which {zό = 0} Π D Φ 0 . It has been
shown [7,13] that the polynomials in elt •• ,en,eϊ1, •• ,e^ 1 are dense
in the closure A(D) of H(D) with respect to the sup norm.

Let i F be defined as before; H2 is the closure of A{D) in the space
L2 of square-integrable functions on dD (with respect to Lebesgue
measure).

LEMMA 6.1. The monomials {ef1 e*% a5 ^ 0 for j > m} are
orthogonal in H2.

Proof. Let Tn be the ^-dimensional torus {t:r\ tx \ — = | tn \ =
1} c Cn. The elements of Tn act on dD by t o z = {txzλ, , tnzn) for
teTn,ze dD. We consider dD with this structure. dD is essentially
the disjoint union of a countable number of open subsets Uk isomorphic
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to Vk x Tn under a nonsingular C2 map, where Vk is an open set in
R^1 i.e., we can find a disjoint union of such Uk having a complement
of measure zero on dD. Namely, let U be the open set of regular
points on dD; these are the points that have a neighborhood on dD
which is a C2 (2n — l)-dimensional real submanifold of Cn. Notice
that Tn o U — U. dD — U has of course measure zero on dD. The set

U n U fe = 0}

has measure zero on U since the set U {zά = 0} has (2n — l)-dimensional
Hausdorff measure zero. (For the definition of Hausdorίf measure see:
St. Saks, Theory of the Integral, Chapter II, § 8). | z± |, , | zn |, arg
zu , arg zn have rank 2n at each point of Cn — U fo = 0}. Thus
at each point

ze U- UΠ U f e - 0 }

\\ \, , I s» I, arg zu , arg zn have rank 2n — 1. But

τ-o^c u- c/n Ufe -o}

so that 1^1, •••, | ^ n | must have rank n — 1 at ^ hence 2; has a
neighborhood t/* in which n — 1 of the | ^ | and arg ^, •••, arg zn

are coordinates. These are then also coordinates for each point in
Tn o Uz. Thus we can write U — U 0 \J {Zj = 0} essentially as the
disjoint union of a countable number of open subsets Uk isomorphic to
Vk x Tn as described above. Now let x = (xl9 , α^-i) be a coordinate
system for Vk and φ = (^i, , >̂w) a coordinate system for Tw such
that tj = eί<pj for £ e Γw. Let giS be the coefficients of the metric tensor
in the coordinate system (x, φ). Since Tn acts isometrically on Cn, it
acts isometrically on Vk x Tn, hence the ^ί:, are independent of the
coordinates φ. For da the Lebesgue measure on dD we have

I efi β e?1 e%ndσ

= ^ \ i/det (βr̂  ) da?χ d ^ ^ I nep e£" dφ1--- dφn .

The integral over Tn is nonzero if and only if aά = βίf 1 ^ j ^n.
We define

COROLLARY 6.2. T/te {/*,„} /orm an orthonormal base for H*. Now
by Theorem 5.1,

k(zf w) = Σ ha(z) hjw)
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converges uniformly on compact subsets of D x D. But we can do
better in this special case:

THEOREM 6.3. For each compact set K c D there is a neighborhood
U of D such that

k(z, w) = Σ ha(z) ha{w)

converges uniformly on U x K. Thus k(z, w) can actually be considered
as a holomorphic function on Z?* with values in A(D). For each
w0 e D, k(z, wQ) belongs to H(D).

Proof. Let K c D be compact and choose a compact set Kocz D
containing K in its interior. Let z° e dD and find Ύ] e Cn, v) Φ 0 such
that η-z° = (ηfo, , ηnzn) e D. We can choose the τη5 arbitrarily close
to 1 (condition (6.1)). Now

converges uniformly in y e Ko. Let we K and consider (z° + εs)ws. If
z) Φ 0 define ys e C by

and ys = wd otherwise. For η close enough to 1, y — (y^) e Ko as w
runs through K and ε = (ey) stays in a small neighborhood U of 0 in
C \ Thus if z) Φ 0 for all j ,

(6.3) ΣhΛ(z° + ε)hφή

converges uniformly in e e U, w e K. In general define xe e D by (xs)j =
ηsz) if z) Φ 0, (x2)j = ed if «5 = 0. Then if U is chosen small enough,

Σha(xs)ha(y)

converges uniformly in e e U, y e Ko, and we [can conclude as before
that (6.3) converges uniformly in ε e Z7, w e K.

This proves the theorem since D is compact.

COROLLARY 6.4. The map i: H2 —• H(D) constructed in Theorem
5.1 is injective.

Proof. Suppose fe H2 and ί(f) = 0. Then

(6.4) i(f) (w) - Σ<J, hay K(w) = 0 .

But (6.4) is a Laurent expansion; thus by the uniqueness theorem for
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Laurent series, </, fca> = 0 for all α, hence / = 0.
For instance, the boundary kernel function for the unit ball in

Cn is

k(z, w) =

where z w — z1w1 + ••• + «nit;n. For n = 2, this formula has been
calculated in [11]. However, I do not know whether anybody has
established this formula for a general n before. Here is the calculation,
a joint effort of H. Rossi and mine. Let vx be the volume of the torus
x T*. Then the square of the ZΛnorm of z" = 2?1 z%n is

tC» vxdη = (2π)n \ xT^1 xT*+1 dη

where dη is the Lebesgue measure on the unit sphere in Rn. Denote
the last integral by aa.
We have

**™-1 dr
o

= Γ ί ° V r 2 xl"1+1 xTn+1 dxx--- dxn
Jo Jo

Λ = l Jo

thus

α - 2*-1 {Σaj + n - 1)! '

For fc we get therefore

k{z, w) = (2ττ)-% Σ α«x ̂ Q>/^ΩJ

- 2"-1 (2τr)-1 Σ (fc + » - 1) * (* + 1) (^wy)*

_ 2"-1 , (n - 1)!
(2π)n (1 - zw)n

7* Generalization to analytic spaces* We are now going to
discuss some ways of generalizing Theorem 5.1 to Stein analytic spaces.

To generalize the definition of a domain with piecewise differentiable
boundary to domains on a complex analytic spaces we have only to
define what we mean by differentiable and diffeomorphic mappings from
a differentiable manifold M into an analytic space X. A mapping
f: M—> X is called differentiable if / maps the sheaf of germs of dif-
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ferentiable functions on X (as defined in [9]) into the sheaf of germs
of differentiable functions on M. If a neighborhood V of 0 e X is
realized as a closed subvariety of a neighborhood U of 0 in some Ck

then the germs of C°° functions on V are the restrictions of germs of
C°° functions on U. The tangent space Tx to a point x e X is the space
of point derivations on the ring of germs of real C°° functions at x.
If x e V, Tx is naturally embedded in the tangent space 2kTx to the C°°
manifold Ck at x; the tangents in Tx are exactly those tangents in
.2kTx that vanish on the germs of C°° functions at x vanishing on V.
The C°° mapping/: M —• Xis called diίfeomorphic at t e M if it induces
an injection from the tangent space to M at t into Tf{t).

In order to establish Lemma 3.2 for analytic spaces we have to
say what we mean by a C°° differential form on an analytic space; or
it suffices to define the sheaf Ωk of germs of C°° differential fc-forms
on an analytic space X. Let 0 e X and V be a neighborhood of 0 that
can be embedded as a closed subvariety of a neighborhood U of 0 in
Cn. Let nΩk be the sheaf of germs of C°° differential fc-forms on U
and nΩ\ the subsheaf of nΩk of germs ω which are finite sums of germs
hλa + dh2 Λ β, the hi being germs of C°° functions vanishing on V.
Ωk — nΩJnΩk (restricted to V) is called the sheaf of germs of C°°
•differential /c-forms on V.

If V is another neighborhood of 0 on X that can be embedded as
a closed subvariety of a neighborhood U' of 0 in Cm, and Ωk is the
sheaf on V associated with this embedding, then by applying Lemmas
2.4c and 2.5b of [14] we find easily that Ωk and Ωk must coincide in
some neighborhood of 0 on X. Thus the sheaf Ωk is well defined on X.

If F i s another analytic space and / : X—> Y is a holomorphic map
then there is a cannonical map of sheaves / * : Ω\ —> Ωk9 Ωk being the
sheaf of germs on C°° differential fc-forms on Y. This map can be
locally defined as follows.

Suppose a neighborhood V( V) of 0 e X(f(0) = 0 e Y) is embedded
as a closed subvariety of a polycylinder U(U') in Cn(Cm). We may
assume that / maps V into V. We extend / to a holomorphic mapping
F from U into Cm, and we may as well assume that F( U) c U'
(shrinking U if necessary). Then F* maps mΩk (the sheaf of germs
Σ{h{a5 + cZ/fcf Λ βj) where h{ vanish on V) into nΩk, and thus induces
a map / * : £?£/«» —• βfco It is easy to check that / * does not depend on
the extension F of / , nor does it depend on the choice of the embeddings
as can be seen by applying Lemmas 2.4c and 2.5b of [14] as above.

The operator d: nΩk —> nΩk+1 passes to the quotient and yields an
operator d: Ωk —> Ωk+1 which is independent of the local embedding of
X. Also Stokes' theorem will hold for C°° chains on X (finite formal
sums of C°° mappings from standard simplices into X) since that theorem
is of formal nature.



BOUNDARY KERNEL FUNCTIONS FOR DOMAINS 1163

With these definitions Lemmas 3.1 and 3.2 hold on any analytic
space on which the holomorphic functions separate points.

Also the proof of Lemma 4.1 is valid for such an analytic space
X with the following definition of a Riemannian metric ds2 on X. ds2

is an inner product on the real tangent spaces Tx to X with the
following regularity property. If V is a neighborhood of 0 e X which
can be embedded as a closed subvariety of a neighborhood U of 0 in
some Ck then there is a neighborhood W of 0 contained in U and a
C°° Riemannian metric on W that induces ds2 on each Tx, x e V Π W.

THEOREM 7.1. Theorem 5.1 is valid also for an analytic space
X of pure dimension on which the holomorphic functions separate
points.

Unfortunately, there may not exist many domains with piece-wise
4ifferentiable boundary on a given analytic space X. For instance, a
relatively compact domain flonl which is the closure of its interior
and whose boundary is a real analytic variety, is not necessarily a
•domain with piecewise differentiable boundary. We will call these
domains with real analytic boundary. Though it is true that a domain
with real analytic boundary admits some kind of triangulation [3], such
triangulations are not suitable for our estimates in §§ 3 and 4. However,
we have shown in [5] that we can integrate differential forms on dD
if D is a domain with real analytic boundary. (Note that dD is
orientable). Now Lemmas 3.1 and 3.2 will again follow as before
provided we konw that Stokes' theorem holds for domains with real
analytic boundaries.

CONJECTURE 7.2. Stokes' theorem holds for domains with analytic
boundaries.

We will deal with this problem in a later paper.
Now let D be a domain with analytic boundary on the analytic

space X of pure dimension n on which the holomorphic functions
separate points. Suppose we are given a Riemannian metric on X.
Let dσ be the surface element on dD (dσ is actually only defined on
the set of regular points of dD). We have proved in [5] that every
function holomorphic on D is in L2(dσ). As before let H2 be the
closure of H(D) in ZΛ Then Lemma 4.1 is valid if conjecture 7.2 holds.
The proof is similar to the one given in §4; we embed a sufficiently
small neighborhood V in X of a point xedD into some C*. We can
find a coordinate system tl9 , t2k for Ck such that for any permutation
7Γ of (1, , 2k), tπl, , ίπ(2Λ-i) are coordinates for a subset Δ of dD Π V
that differs from the set of regular points of dD Π V by a set of local
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Lebesgue measure zero (see the first two paragraphs of § 3 in [5])-
Then estimate (4.4) takes the form

(4.4') j \ f |21 βy I ̂  c Σπ J \ f |2 dtπl dtπ{2n^

where the sum runs over all permutations π. Let dσ = gπdtπl dt^^
then by Lemma 4.4 in [5],

(4.5) c' lA \f\2dtπι--.dt7τ{2n-1)

\f\*gjitΛ/\ •" Λ

where || || is the norm in L2(dσ). Thus

THEOREM 7.3. // conjecture 7.2 holds then Theorem 5.1 holds for
domains with real analytic boundary on an analytic space of pure
dimension on which the holomorphic functions separate points.
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