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If X; 1 =35 =r)are objects we denote the corresponding r-tuple
(le Xz; ety Xr) by X and the (’l" - 1)'tu:ple (XD -Xzy Tt Xi—-ly Xi—l—l! i '7X'r)
by X(7). When X; (1 =j =< r) are based topological spaces /71X will
denote their topological product and /7*'X the subspace of IIX whose
points have at least ¢ coordinates at base points (always denote by *).

Let a;em, (X;) (n; 22,1 <j =7, 7 =3) be elements of homotopy
groups then we have

*(8ay) = ApkOlyk ++» *xa, € T (1 X, [I'X) ,

where n = Yn; and » denotes the product of Blakers and Massey [1].
We thus also have '

*(1) € T, (1 X (3), [I'X(3)) .
There is a natural map IIX(3), II'X(2) — I[I'X, I1*X and we denote also
by xa(j) its image induced in =, (II'X, II’X). Let @ denote the

homotopy boundary homomorphism in the exact sequence of the triple
(IIX, II’'X, II’X). We shall prove the formula:

oxa = (1 = 1 = r)(—1)a;, xa(?)] € 7, (II'X, II’X) , (0.1)

where (1) =0, &(@) = ny(n, + Ny + +++ + n;4) (¢ > 1) and where the
brackets refer to the generalised Whitehead product of Blakers and
Massey [1]. In the case of the universal example 0.1 becomes the
formula of Nakaoka and Toda stated in [4] and proved there for
r = 3. I. M. James' has raised the question of its validity for » > 3
and as the formula has applications (see [2], [3]) it would seem desir-
able to have a proof available in the literature. The present argument
while inspired by [4] has a few novel features.

(1) DEFINITIONS AND LEMMAS. Let ¢ = (%, %,, ---, 2,) denote a
point of n-dimensional Euclidean space and let

Ve = fu; 2ot = 1},
St = {x; Tu? = 1},
Ert={reS4a, =0},
Ert={zxeS" 2, =<0},

Dy ={re V"2, =0},
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Dt ={xe V"2, <0},
D ={ze V*ua = 0},
D ={xeV*ux <0}.

We recall that if Y & X then X is a closed n-cell and Y is a face of
X if there exists a homeomorphism f: V*— X such that f(E? ) =Y.
The subset X° = (S is the boundary of X. If X and Y are oriented
cells we assign to X X Y the cross-product of the orientations of X
and Y.

LEmMmA 1.1. Let X, be a face of the cell X and Y, a face of the
cell Y. Then

X, xXxY)UX xY)isa face of X X Y.

A proof of 1.1 may be found in [1] to which the reader may also refer
for details concerning orientations. The proofs of the following two
lemmas are standard exercises in homotopy theory and will be omitted.

LEMMA 1.2. Suppose given a simplicial decomposition of a closed
n-cell Fi(n = 3) and a subcomplex G which is a closed n-cell oriented
coherently with F. If A is a stmply-connected subset of a space Y
and if f:F—Y is a map such that f{(F —G)UG°} S A then
f:F,F°—>Y,Aand f:G,G°—Y, A represent the same element of
T, (Y, A).

LEMMA 1.3. Suppose given a simplicial decomposition of
V*+Yn = 8) and subcomplexes Fy(i =1, 2, +--, m) which are faces of
V*+t with disjoint interiors oriented coheremtly with S™., Let A be
a stmply-conmected subset of a simply-connected space Y, let f: S"—Y
be a map such that f{(S* — UF)U(UF?) & A, let f:S*—Y repre-
sent aerm,(Y) and let f:F;,, F?—Y, A represent a;ern, (Y, A) (1=
1,2, ---,m). Then ja = Xa; where j:m,(Y)— 7,(Y, A) is the injec-
tion homomorphism.

Let A be a simply-connected subset of a space Y. Let f: V7, S*'—
A, xand g: V9 S, E'—Y, A, x be representatives of a e m,(4) and
Bern (Y, A). Let

h:S*t X ViUV X Ef, S x B2y VP x S =Y, A
be the map such that

fx) if (x,y)e V? x E7,

Mo W= 1wy it @, y)e S x V.
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Then if S*' x V?yU V? x E%?' is oriented coherently with V? x V¢
we recall 3.1 of [1]:

DerFINITION 1.4. h represents [«, 8] € 7, .Y, A).

(2) Proof of 0.1. Let a; be represented by a map
"lj\i : Vni, Sni_l - Xi’ *
with the property that
(2.1) PDEU D) = x .

If wedenote V' X V™x oo X V™ by Vand ViX V-tx V'itlx oo x V™
by V(%) then xa and xa(i) are represented by maps

WiV, Ve—-I0OX, II'X,
¥(t) 1 V(I), V()° — I'X, II’X
such that

"l"(wly "t wr) = (1”1(901), M) "l’\r(xr)) ’
(2'2) ’1//‘(7:)(3}'1, tety Loy Bigry * %y wr)
= ('1[/‘1(%1), Ty "l"i—l(xi—l)y *, "/"i+1(wi+1), tt ’lﬁ‘,((v,.)) (xi € VM) .

Let 0,: V" x V(t) — V be the map such that
pi(xi’ (xly ety Liqy Biqy =%y xr)) - (xlv Lay ***y xr) .
As an easy consequence of our orientation convention we obtain:

LeMMA 2.3. The degree of o, is (—1)*?,

..................................

1({111]10 1| —|—1|—

111110} —]|—]|—
1l1|—=|1 o]—|—|—

1l1|l— — o|—|—
11— — — o|—|—

1|— — — — o0~
1|— — — — — 0|—

- — — — — — 0
—_— — - - - — — 0

r even ' r odd

The proof of 0.1 depends on the construction of certain closed
cells G, €E V(@) (1 =¢ = 7). Consider the two infinite arrays illustrated
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in the diagram. They contain between them exactly one centrally
situated » X r matrix. Let 7(¢, k, r) denote the symbol in the (¢, k)
position of this matrix, We define

— nE
Gi - H Nisksr) 9

where topological product I7 is taken over all values of & (in ascend-
ing order) except those for which 7(s, k, ) = 0.

EXAMPLES If » =5 then G, = D x D" x DM x D,
If =6 then G, = D x D™ x D x D™ x D,
Certainly G; & V(¢). We shall refer later to the following property
of the G; which is obvious from the diagram.

LEMMA 2.4. If i< j=<7r then there is an integer k with
1 % k +# j such that G, has a factor D* and G; a factor DZ*,

The proof of the following lemma we postpone.

LemmaA 2.5. For each ©1 =1,2, ---, r, there exists a face 7, of
G; and of V(i) such that if G, has a factor D;* then the projection
of 7; on D" does not intersect D* and such that if G; has a factor
D™ then the projection of t; on D** does mot intersect D;*.

In view of 2.1 and 2.5 we have +(i)(7;) = *. Moreover 2.1 and
2.2 imply that
YE{(V(E) — G) UGS € IIPX .

Thus applying 1.2 (we may assume II’X simply-connected for this is
certainly so in the case of the universal example) we obtain that

()| Gy): Gy, GY, T; — IT'X, HZX,*

2.6
(2.6) represents *a(7) .

We now define

F; = p(8"7 x G;U V"™ X 1)) l=si=sr)

and prove later:

LEMMA 2.7. The F; are faces of V with disjoint interiors. The
map (Yo;| o' F;) has the property that

q/"l(x) if (xy y) € an, X Ti ’
P()y) of (@, 9)eS" X G;.

If we orient F; coherently with V and 0;F; coherently with V" x V(3),

(y0; | 07 F) (0, ¥) =
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1.4 implies that (4r0;| 0;'F;) represents [a;, xa(?)].

Since 0; is of degree (—1)*?, (v | F;) represents (—1)*“|a;, xa()]
and hence applying 1.3 the formula 0.1 follows in view of the com-
mutativity in the diagram

2 (11X, 'X) —— 7, (II'X, I’X)
/
e
7T, (II'X)

where d denotes the boundary homomorphism in the homotopy sequence
of the pair (/IX, II'X).

Proof of 2.5, Let Dy and D3 denote the subsets
3}
2 ’
3}
5

Let D = G, have a factor D;* for every factor D/ of G; and a factor
D* for every factor D’* of G,;. Then certainly z; = DN V(¢)° has
the desired property.

[\%

Do’”:{xe V”;xlg—;— and x,

D;”:{xe V”;xléé and x, =

Proof of 2.7. If o, is the face of G, complementary to 7; then
it may be observed that F) is the face of o, (V" X ;) complementary
to p(V" X 0;). Thus

FP? = 08" X 0,U V™ x ¢?) .
Suppose © < 7 and let

H=p,8"" x G;) N AS™ x Gy),
H' = p(8"7 X G) N pV" X ;)
H" = o(V" % 2) 0 0,87 x G)).
2.7 will follow when we have proved that HES FP N F?, H = Q

and H” = Q. Since the images of H under the projections into V™
and V" are contained in S™" and S™™ respectively we have

HE p(8™7 x G?) N oS™™" % G7) .

2.4 asserts the existence of an integer k¥ with 2 2k % Jj such

that G; has a factor D'* and G, a factor D, Hence 2.5 implies
that
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HNpS" ' xt)=HNPp8" "' x1;) = Q
and hence that
Hg p8"7" X (G2 — ) N pAS™ ™" x (G§ —7,)) S FP N FY .
2.5 also implies that H' = H” = & which completes the proof of 2.6.
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