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The function o,(v) and the polynomial ¢,(v) have been defined in
[2] and [3] respectively. Let J,(2) be the Bessel function of the first
kind, and j,,,, be the zeros of z7J,(z), then

(1) O-n(v):i(jv.m)_zn’ ’Yb:l, 2, 3, R
m=1

(2) 9a0) = 4 I1 @ + )0, ),

where [#] is the greatest integer =u.

0,(v) is a rational function of y with rational coefficient. ¢,(») is
a polynomial in v with positive integral coefficients, and has degree
1—2n+ 37 [n/kl. All real zeros of ¢,(v) lie in the interval (—n,
—2). These polynomials also satisfy certain congruences [3].

Let B, and G, be the Bernoulli and Genoechi numbers:

& (n
(3) Bn_;o(lJBk, n*l,
(4) G, = 2(1 — 2B, .

The symmetric function o¢,(v) can be expressed in terms of the Ber-
noulli and Genocchi numbers by means of the following formulas:

(5) 0.(5)= (-0 L B
(6) «n(ﬁg)z(—nnfgngn,

where by B, and G, we understand the even-suffix numbers B,, and
GZn [2]‘

In a previous paper [4] a structure of ¢,(v) has been given. This
in turn leads, through (2), to a corresponding structure of o,(v). And
since for v = 1/2, 0,(v) is expressible in terms of the Bernoulli number
B, it is natural to enquire about a structure of B, corresponding to
that of o,(v).

Three formulas from a previous paper [4, (8), (15), (18)] will be
used here. They are written down as formulas (7), (8) and (9).
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(7) 50) = 3 WOBENM0) ,

where «a, = 2, k < [n/2], and for k = [n/2],

2 if n is odd,
&, = . .
1 if » is even,

2,0) = T @ + 97+, ols, b, ) = [ 2] - [£]- E=A

8=1 8 S

c(n

(8) 6.0) =S 24T @ + 9y,

=1

where (i) c¢(n) is the number of components of ¢,(v),
(ii) at most one »; =0,

cn) —
(iif) ) 2% = mt (2“ 2) ,

n—1
(iv) nz—“l n; =1—2n+ E%] [—?] , for all 7, and
=2 s=1

(v) given an integer s, 1 <s < n, n > 3, there exists ¢ such
that 0 < n;, < [n/s].

(9) o(n) :ﬁ ok)on — k), o(l)=1.

We shall obtain specific information about certain components of
¢,(v) which will be used later on. We begin with

(10) For 2<s<m, (v+ s)i* ig a factor of some component of
é,(v), and if s =2, (v + s)i*/*17* is a factor of a component of
$u(v), 1> 3.

Consider the first part of the statement. We observe that if 2 < s < n,
the statement is true for n = 4,5, 6,7 (see [3]). Assume the state-
ment to be true for £k =4,5,--+,n — 1., Take the kth term of (7),
T, = a,2,(0)¢.(0)¢,.(v), k=4, n =8, Then some component of
6, V)9, (V) has a factor (v + s)l/isItlin=hisl  However, 2,(v) has a factor
(v + 8) if and only if (s, k,n) =1, Therefore, some component of
T, which is a component of ¢,(v) has a factor

(2) + 8)[’¢/8]+[(n-—k/8)]+8(8.k.n) — (D + s)[n/s] .

The second part of the statement may be proved by a similar method.
The following may be obtained from (10)
(11) max (n;;) = [n/7], 2 <J <,
=[n/2]l—1, 5=2.
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(12) For s> 2, and m such that (2m + 1)s 4+ m < n, the product
TLm, m) = T1 {2 + (@1 + Ds + nJee/wiens
is a factor of some component of ¢,(v).
Proof. We shall use induction. Define the set of integers

I, = {integers 2: 2m + 1)s + m < < (2m + 3)s + m + 1},
m=0,1,2 «--.
If nel, II(n,0) = + s)™1 and (v + s)"/*1 is a factor of some com-
ponent of ¢,(v) by (10). Assume that for ¥ <m — 1, ne I, implies
II (n, k) is a factor of some component of ¢,(v). Let ne I,, and sup-
pose n=02m+1)s+m+1t 1=t=2s. Then n—2i=2m+ s
+m —4¢el,.,. Take formula (7), and consider the (2¢)-th term,

Ty = 0y 25()95i(V),5i(V) .

By induction hypothesis there are components V., of ¢,,(v) and V, of
$,—s(v) such that I, and II, are factors of V, and V, respectively,
where

I, =TT { + (@0 + 1)s + Ajeilensnen
A=0

m—1
=TI {0 + (20 + 1)s + aJo-siarene
A=0

and 2p + s+ p <2, @m —Ds+m—1<n— 2¢. Since the term
T,; yields a component of ¢,(v), we have that a,2,(v) I,11, is a factor
of a,;2,;V,V, =V, where V is a component of ¢,(v). However,

n—1

Q) =TI (v + r)yEim2m

r=1
Hence after a simplification, we obtain
azigzi(”)nlnz = P(”)H(n; m) ’

where P(v) is a polynomial in v of degree =0. Thus the term T;
yields a component V of 4,(v) such that II(n, m) is a factor of V.

[n/2]
13) Vin) =211 (v + r)*'1', » = 2, is a component and the only
r=2
component of ¢4,(v) with the greatest numerical factor 22,
Proof. First we shall show that V{(n) is a component of ¢,(v).

Observe that for n = 2, 3,4, V(n) is a component of ¢,(v). Assume:
V(m) is a component of 4,(v), 2 <m = n — 1. Consider the first term
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T, of (7): T, = 22,(v)¢,—(¥). There is a component V(n — 1) of 4,_,(»)
such that

[n=1/2]
Vin — 1) = 20 1'[12 (v + pyfnmtil=t
r=2

Hence 22,(v)V(rn — 1) is a component of 4,(v). Substituting the ex-
pression for 2,(v), we obtain

20,0)Vin — 1) = 2~ [ﬁﬂ (v + r)-t = Vin) .

The second part of the statement that V(n) is the only component of
¢,(v) with the greatest numerical factor 2" may be proved by
induction.

1y Vi =-LEDVD

w2 n = 4, is a component of ¢,(v) .

This may be proved by considering the first term 7T, of (7) and using
induction.

(15) For v =1/2, the value of Vi(n) is less than the value of any
other component of ¢,(v).

Proof. Take the kth term T, of (7), .
T, = a,2,(V)$ (V)P (V) .

Vin) is obtained from 7T,. For k= 2,3 and y = 1/2, the smallest
components of T, correspond to the smallest components of ¢,_.(v),
because «,2,(v)¢.(v) is constant. We observe that for n =4,5,6,7,
Vi(n) is less than any other component of ¢,(v), v =1/2, Assume
that for v =1/2, Vy(m) is less than any other component of ¢,(v),
4 = m < n. Using the induction hypothesis it is seen that for v = 1/2,
Vin) is less than any component obtained from T,, £k =2,3. For
k=4, n=8, a,2,0)Vyk)Vin— k) is a component of ¢,(v) and its
value at vy =1/2 is less than the value of any other component ob-
tained from 7',. Thus among all components of #,(v) there is a set S
of exactly [#/2] minimum components

S = {a,,.Qk(u) Vi) Vin —k): 1=k < [%]} .

Obviously Vin)e S. We claim: Vi(n) is less than any other element
of S. It suffices to show that

lim Vi(n)
w12 0, 2,(v) Vi(k) Vi(n — k)

<1, k+#1.
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A verification of this inequality is left to the reader.
Let (8) be multiplied by 2*"(v + 2)*™,  Then considering (7),
induction yields the following

(16) n—[n2l—1zn —ngy.

THEOREM. The Bernoulli number B, has the following repre-
sentation :

‘ 1)”_1(27&) 1 c{n) " _

17 B'n = ( 2 (2 1

{n 206%(2n+1),2< @)
o(m) Nifn=1,

where 1. 2‘1 2rig) = 5ifn=2,

1ifn=38; for n >3,
2' az:ﬂﬁ(zm“—g)zm’ gim:n_gy Oéim<[ﬁ]’
m=1 m=1

3. 20, = %-5-7-9------(27@ _1,

_3--5-7-9-----~(2n- 1) > g, > 7=, i> 1,

4, rn=2, r,=0; r,#0, 1+%2,
5. Z 2ri = gin g (20—
n—1
6. the g.c.d. 2"a,, 27a,, ---) =1, and
7. gtven an odd inleger s, 5 < s < 2n — 1, there s © such

that st~ divides a;; if s =5 then s/* 1 dijvides
a;, for some 1.

Proof. Substitute (2) in (8) and let v = 1/2, then in view of (5)
the following is obtained after some simplification
(—)Em! @

—1
B, = {257 TT @k + Dyvanae]”
206 @n + 1 2 5H( +1

where 7; =n — 2 — n; = 0 by (13). Note that
ﬁl (2]{; + 1)[7;/]:]-%,;15
k=2

is divisible by 5 for each %, because by (11) [#/2] — n, = 1. And

2 =

—1 4 >psi{n/k] — ny} = n — 3 by (8, (iv)). Therefore, we may write

n—1 7~
a; = bt kl;Iz 2k -+ 1)tnFl=nip —= [_fl @2m + 8)in,
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where >%2% 4, =n— 8, 0 £ 1, <[n/2] by (11).

and ?;12[%/2]— 1—mn,,
Uy = [M/R] — 1y, R=m+1, m>1,

Thus property 2 is verified.

By (18) and (14), V(n) and Vi(n) are components of ¢,(v). If the
components of ¢,(v) are ordered in such a way that Vi(n) is the first
and V(n) is the second component, then for v = 1/2, the values of
Vin) and V(n) correspond to 2", and 2"a,. By actual calculation it
is seen that 2ma, = 4/7-5-7-9-+++-(2n — 1), , = 2, 7, = 0. Therefore,
by (15) 2rig, < 4/T7-5:7:9+++«(2n — 1), ¢ > 1, Since r,=n — 2 — n,,
it follows from (13) that 7, = 0, if 7 = 2. By (16),

’I'%:’n—2—-%%2[7@/2]—1—%,2:1:1.

Hence for each 1,
orig, = 2 mj:l (2m + 3)im
— oriiQh g @m + 3)im > o9 |
Propertieé 3 and 4 are proved. Property 5 is derived from (8, (iii));

Z o Ti — Z —ntng — 92—n szn,’ = Qt—np-1 (zn - 2) .

Concerning property 6, in view of 4, it suffices to prove that g.c.d.
(@, @y +++) = 1. Note that each o, is a product of odd integers. By
12), I (n, m) is a factor of a component, say V,, of ¢,(v). However,

V2o 1 @ + B = (P,
k=2

where P(v), a product of linear factors, is a polynomial in v of degree
>0. P(v) is not divisible by any factor of II(n,m). For v =1/2,
II(n, m) is divisible by all odd factors q(2s + 1), ¢ =1, 3,5, ---, which
are less than n. Therefore, for v = 1/2, P(v) is not divisible by any
factor ¢(2s + 1). Since P(v), for v = 1/2, corresponds to some a; the
latter does not contain any factor ¢(2s + 1). Thus for each s> 2,
there is a; which is not divisible by ¢(2s + 1), ¢ =1, 3,5,---, Hence
the g.c.d. (a,a;, )=1.

Suppose s =2m + 1. Take a component V' of ¢,(v) which does
not have the factor (v + m). It may be shown that there exists such
a component V’'. Then
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Ve Lo+ B = Q)

where the polynomial Q(v) has a factor (v + m)™™, m > 2, For
v =1/2, Q(v) corresponds to some a; and (v + m)™™ corresponds to
the factor (2m + 1)I*/™ of a,. However, if m =2 than 5% ig a
factor of a@; for some 4. This completes the proof of the theorem.

We remark that the Genocchi number G, and the numbers defined
by L. Carlitz (see [1]).

a,=2"r!(r — o 0),

may be expressed in a manner similar to (17). In fact, for the num-
bers a, we have the following

(18) a, = {(r — 1)1} cﬁ 2%‘1’[—1 Jrir—Trikl |

k=2

A list of first few Bernoulli numbers expressed according to the
theorem is given below.

Blzﬁ(%),

B=— 2t (5),

B = 20?6!3-7 (D

!

Bi=- 20?6.*-9 <221-5 +%>

B, = 201)5!-11 (22-15-9 * 7%9 + 2-;-7>’

o 20-1(255!-13 (22-5-19-11 +7-91-11+2-5%7-9+2-5-17-11
* 22-&13-72 * 23-;2-9>’

o ( 1 P S

20-6'-15 \ 2%.5.9-11-13 ' 7-9-11-13 ' 2+5-7-9-11

‘L2-5-7%11-13+2-5-71-9-1:~>,Jr 2-5-172-9
* 22-52%7-11 * 22-5-172-13 * 23-53-7-9
+ 23.52%9-11 + 23.52%9-13)'
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