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ON THE DEFINING RELATIONS OF A FREE PRODUCT

ELVIRA STRASSER RAPAPORT

If Fn = F(xlf , xn) is the free group generated by the symbols
%u * 9 %n, and Ri = Bi(x19 , xn), i: 1, , k are element in it, let

B = {B1, ••-,#*}

be their normal closure in Fn, and let

F/B = (xlf , xn Rlf , Rk)

be the factor group of Fn by R, with w and & assumed finite.
My object is to prove the following theorem and corollaries.

THEOREM. / /

F/B = (xlf , xn Blf , Rk)

and

isomorphic groups and n* + k < n + k*f then in the free group
Fn+n* generated by $?,•••, #**, zl9 , zn the normal subgroup
{Bf(xf9 , xi*), , JB* (a?*, , xt*), Zu ' > ^} ίβ normal closure of
n* + k < n + k* elements.

The two corollaries concern the cases k fg 1 and &* ^ 1 — that
is, free groups and groups possessing presentations on a single defining
relation. (Deficiency is defined in Remark 1. below.)

COROLLARY 1. If a group possesses the two presentations of the
theorem, then the one with the lesser deficiency has at least two de-
fining relations (&* > 1).

COROLLARY 2. IfG = F/R and k ^ 1, then n — k = dis maximal
for all presentations of G.

The theorem is trivial if for example certain of the &* defining
relations are redundant. It becomes interesting when the number &*
is least possible for the subgroup i?*. For suppose that k* is minimal
for # * :
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1390 ELVIRA STRASSER RAPAPORT

for any elements Sl9 , JS * -I of Fn*. Then if zlf , zn are new
symbols and Fn+n* the free group on the symbols xf, , $* , zu , £„,
the normal closure of JKf, , 12** in JF% + %* still requires &* elements
to generate it. Consider however the normal subgroup

of Fn+n*. The 12* do not involve the symbols z{ fc* is least possible
for 12*, and, of course, w is least possible for the group

(z19 * # , Sn «i» * > «n) = 1 .

Now the group

(Xι, , fl?n*, zl9 , zn χvx, , .π^*, ^x, , zn)

is the free product GX*G2 of Gλ = F*/R* and G2 the trivial group
fe, , «n Zu ' , z*) The theorem claims that the sum of the
(minimal) numbers of defining relations for the G{ is not always
minimal for G^G2.

Compare this with Grushko's theorem, which implies that the
number of generators of a free product is the sum of those for the
factors.

REMARK 1. If one takes the number k in the presentation F/R
(of any group) to be least possible for R in F, then this presentation
is said to have the deficiency

d — n — k .

Thus, setting cϊ* = n* — &*, the inequality n* + k < n + fc* is the
same as

d*<d,

provided that k is minimal for R and &* is minimal for 12* in their
respective free groups. The deficiency of a presentation is not a group
invariant [1].

REMARK 2. The group with noninvariant deficiency given in [1]
happens to be non-Hopfian (it is isomorphic to a proper f actorgroup of
itself: G ~ G/N, N Φ 1). It is not known whether such groups must
be non-Hopfian however, two presentations, G and G/N of a non-
Hopfian group may have identical deficiencies even if N is not trivial.
That is, if a group is given by the presentation

Gt = F/R = (xlf -- ,xn;Rlf---,Rk)
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and is isomorphic to its own proper factorgroup given by

G2 = F/R* = ((?i JRA + I ) 9

it need not follow that k + 1 is minimal for iϋ* whenever k is minimal
for R. For example, the first known pair of presentations of a non-
Hopfian group, due to Higman and quoted in [2], is

G1 = {a, δ, c or1 bάb~\ bcb^c-1)

G2 = (G1 ab-'a-^

but iϋ* = {Rl9 R29 R3} — {Rl9 RB} (the R{ being the three defining words
above in the order given).

Proof of the theorem. Set

x = (x19 , O , ^* = (xί, , α£), /(»*) = (Λία?*), , Λ(α?*)) ,

etc., and let

G1 =

with the isomorphism I given by

= /*(»*), i : 1,

ί(ffi(»)) = »*, i : 1, , n* .

Form the groups

jBi = F/i2 = (αjlf , χn, ylf , y%. R19 , Rk, Vjgj'ix), j : 1, , w*)

and

H2 = F*/R* = (x*, , xί, y*, , y* Λf, , i?,**, yffϊ\x*),

i : 1, , w) .

These are new presentations of the same group and the following
mapping, Jl9 defines, and isomorphism between Ht and H2 [cf. 4] :

Ji(Xi) = !/*, i : 1, , w

«7i(3/i) = a?*, i : 1, , n* .

Since

xf - I(g3 (x)) = ffi(7(αj)) = ^(/(α*)) modulo i2*

and

R(f(x*)) = 1 modulo Λ*
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in G2, and hence in H2, one gets the following identities in H2:

J,(R) = R(y*) = R(f(χ*)) = l ,

Ji(yj97\χ)) = xfgjW) = xfgjKΆx*)) = l .
o o o o

Clearly, Jx maps not only Hλ on H2, but also F on F*, and R on 22*,
isomorphically.

Finally let

H3 = F'/Λ' = (xf, , α&, s l f , zn 22*, , RU z1, , O .

Under the transformation Ja given by

•/a(2/»*) = Zifi(x*h i : 1, , n ,

J 2(x|) = α??, i : 1, , n* ,

H2 is mapped isomorphically on H3 and J2 is also an isomorphism be-
tween the free groups involved:

J2{h) = F' J2(i*) = R' .
o

Writing / = J2JX gives JHX = ίZg, J J P = F', JR = R', since J maps
two free groups of equal rank (namely n + n*) onto each other. Hence

JR = {JRX, , JRk, J(y1gτ1(x))f

showing that i2' is the normal closure of n* + k elements in spite of
the possibility that &* is minimal for i?* and that the Rf contain no
^-symbols.

This concludes the proof.

Proof of Corollary 1. If &* = 0 then R' becomes {zlf , zn}9

the normal closure of a free factor of F', and so requires
n — n + k* > n* + k defining elements. This contradicts the theorem,
so &* Φ 0.

If &* = 1, then Rf = {JSf, ^, , zn} = {sx, , s j obtains. Now
R* contains the free factor F(z19 •••,«») of F' and is the closure of
n elements in Ff. Therefore, by [3], Rf — {z19 , zn} and since
the Rf contain no ^-symbols, 22* is empty, so &* = 0. Hence &* > 1.

Proof of Corollary 2. Suppose, on the contrary, that there is a
presentation with deficiency c?** > d. Then k can play the role of fe*
above and Corollary 1 is contradicted.
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