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KENNETH ROGERS

1* Introduction* The purpose of this note is to give an im-
proved estimate for N(ri), the maximal number of pairwise orthogonal
Latin squares, by following the method of Chowla, Erdos and Straus
[2]. The difference is that we use a result of Buchstab [1] rather
than that of Rademacher in the sieve argument. Our result is that
if c is any number less than 1/42, then for all large n we have N(n) > n\

In the notation of Buchstab, write PJx x1}a) for the number of
positive integers not exceeding x which do not lie in any of the pro-
gressions a0 mod Po, a{ mod pi9 or 6̂  mod pi9 where p0 = 2, and Pi
runs over the primes from 3 to xlla. The subscript ω refers to the
fact that P depends on the ai9 biu Buchstab proves that

λ(α) &x + θ(+ θ( n(logxf \ (logic)3

where d is a constant 0.4161 and λ(5) ^ 0.96.

The properties of N(n) used for the proof are those of [2]:
A. N(άb) ̂  Min {N(a), N(b)}.
B. N(n) ^ n — 1, with equality when n is a prime-power.
C. If k ^ 1 + N(m) and 1 < u < m, then

N(u + km) ^ Min {N(k)9 N(k + 1), 1 + N(m), 1 + N(u)} - 1 .

We note that A and B are due to H. F. MacNeish, while C was
found by Bose and Shrikhande.

2* Lower estimation of N(n). We must deal separately with
odd n and even n, and we use a fact proven in [1], called there
"Lemma fl":
D. The number of integers no greater than x, which have a prime
factor in common with n and greater than n°, is no greater than
x/gn9.

Estimate for even n. We pick k so that

(fcΞ= - 1 (mod 2 [ l o

( 2 ) Jfc m 0 o r - 1 (moάp) f o v S ^ p ^ n l l β ,

I ^ n1" .
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Since k = — 1 + h2iloS2nla>1, say, we know the number of such k is
Pω((l + nlly)/2ίlog*nlal nllβ). In view of Buchstab's theorem, we take
1/7 — I/a = 5/β and then have, for some positive constant c and all
large n,

P ω > c
log2™

Our k have no prime factor below nllβ, so to choose k also prime to
n we must deal with the primes in n which are greater than nllβ.
By D, the number of integers below nlly, which have a prime factor
which exceeds nllβ and divides n, is at most nlly/(l/β)nllβ. Since we
want this to be less than the number of k, we take 1/7 = (6—ε)/β,
where 0 < e < 1. Then, for all large n we can choose k as above so
as to be prime to n. Note that we now have I/a = (1 — e)/β. Since
all prime factors of k exceed nllβ, and due to the restrictions on Jfc+1,
we deduce from A and B that :

N(k) > nllβ - 1

N(k + 1) > Min (LnV; n1*) - 1 ,

and we note that for all large n both these estimates exceed
Now, since we want to have n — u + mk, write

0 < nx < k , (nl9 k) = 1,

and

Now choose u± so that :

nx (mod 2) ,

/3x 1^1^ -njk (mod^), p\

n2 (mod p)

By Buchstab, this is all right as long as k ^ w1/5δ, so we choose
1/δ = 5/τ = 5(6—β)//3. No prime less than or equal to k can divide
w: for u is prime to fc, and those primes below k which don't divide
k do not divide u, by (3). Hence

(4) N(n) ^k> N(k) > —nlla .
ό

Finally, m = (n — w)/fc, of course so m — u = {̂  — (1 + k)u}/k, which
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we want to make positive. Since (1 + k)u < < n2ly+1'8, choose β so
that 7-(6 - e)/β < 1, or equivalents I/a < (1 - e)/7(6 - ε). Thus we
can achieve the conditions so far expressed for all large n, as long
as a is any chosen number exceeding 42. As to N(m), note that
m — n2 — uλ gέ 0 (mod p) for 3 5£ p ^ k. Also u is odd, by (3), and n
is even; hence m is odd. Thus

( 5 ) N(m) ^k> N(k) >±-nll« .
ό

The conditions of C apply now, and the above estimates and C imply
that for any constant c less than 1/42 we have:

N(n) > nc, for all large even n.

Estimate for odd n. This time k is chosen even, the conditions
being:

k + 1 = 1 (mod:

k + 1 φ. 0 or 1 (mod p) for 3 ^ p ^ w1/β ,
h 4- 1 < M1/7

With obvious changes in detail from the previous case, we still get
Min {N(k), N(k + 1)} > lβ(n)llΰύ

9 and (n, k) = 1. This time, the relation
n — u = (n2 — Uχ)k ensures that u is odd, but we must adjust the parity
condition on uλ to ensure that m is odd:

ux ^ n2 (mod 2)

ux -φ— njk (mod p), for pkkΛ

Ui ^ n2 (mod p) J

Thus m = n2 — u± is odd, and now the details are as before, giving
finally the following result.

THEOREM. TO each number c which is less than 1/42, there cor-
responds an integer n0 — no(c), such that for all n> n0 we have

N(n) > nc .
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