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A. ZABRODSKY

Introduction. Let X and X be two Hausdorff spaces and f a
continuous' mapping of X into X. We say that f is a covering mapping
if f maps X onto X and there exist an open covering' " of X having
the following property:

(1) For every Ve, f[V] is a union of a family .&# (V) con-
sisting of pairwise-disjoint open sets each of which is mapped homeo-
morphiecally onto V by f.

The pair (X, f) is called a covering space of X.

If X is a metric space, nothing can be said, in general, about the
diameters of the elements of the covering ¥~ of X, the diameters of
the elements of # (V), Ve 27, or any isometric properties of f, as
can be seen from the following example:

ExAMPLE 1. Let X be the real line with the usual metric, X the
unit cirele [z| =1 in the complex Z-plane with length of minor arc
as the distance between two points and finally f the function:
F@ = o,

Then (X, f) is a covering space of X, if " is the set of arcs of
length one. Now, let V' Dbe the unit spherical region (i.e. the are of
length one) with 2 =1 as centre. One can easily see that f[V]
consists of intervals of the form 2x7r —1 < a*<2kwr + 1 and the
infinum of their diameters is zero. Thusif Ve .#(V), f|V has in general
no isometric properties. But it is easily seen that the metric in X
can be changed (without changing the topology of X) in such a way
that |V will be an isometry for every Ve . (V) and every Ve ¥ .
This leads to the following problem:

Problem. Let (X, f) be a covering space of a metrisable space X.
Does there exist a metric 0 in X and a metric 0 in X, inducing the
topologies of X and X respectively and such that the family . of
unit spherieal regions in (X, 0) has the following property:

(A) For every Se ., f'[S] is a union of a family .#(S), con-
sisting of pairwise-disjoint unit spherical regions in (X, 0) each of
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which is mapped isometrically onto S by f?

In this paper we give a positive answer to this question for locally-
connected spaces (Part 1). If X is not locally-connected, it may happen
that no metrics 0 and o can be found, so that (A) will be satisfied
(Example 2). But similar results are also valid in general spaces (not
necessarily locally connected). (Theorem 3, Part 2)

Part 1. Covering spaces of locally-connected paracompact
spaces. In this part we deal with paracompact uniform spaces. It
contains Theorem 1, providing a solution to a problem analogous to
the original one stated in the introduction for paracompact locally-
connected uniform spaces. From this theorem a solution to the original
problem concerning locally-connected metric spaces is derived (Theorem 2).

LEMMA 1. Let (X, f) be a covering spaces of a locally-connected
paracompact space X. There exists a covering 2~ of X having
property (1) and satisfying the following condition:

(2) For every Vand Wof 7, each element of 5 (V) intersects at
most one element of F (W).

Proof. Let % be a covering of X by connected open sets having
property (1). Let " be a 4-refinement® of % consisting of connected
open sets. It is clear that 2" has property (1). It has to be shown
that (2) holds. In fact, suppose there exist elements V and W of &~,
an element W of % (W) and two distinct elements V, and ¥, of .7 (V)
such that V, N W = ¢ and V,Nn W = ¢. Thus VN W+ ¢ and since &
is a 4d-refinements of %/, it follows that V U W is contained in some
element U of 2/. The sets V,, V, and W, being homeomorphic with
connected sets, are connected, and since V.n W and V.NW are not
empty we have that the set V, UV, U W is connected. By VU W U
we have that the set V, UV, U W < f7[U], and since f[U] is a union
of disjoint open sets, this set, being connected, is contained in one
and only one element U of & U). Then, however, f (V) = £(V)
contradicts the fact that f| U is a homeomorphism.

THEOREM 1. Let (X, .7) be a locally-connected paracompact
uniform space with o7 as the maximal uniformity®, and X a Hausdorf
space and f a mapping of X onto X.

2 We recall that a 4-refinement ? of a covering % of space X is a covering of X
having the property that the union of the elements of ® which contain a fixed element
2 of X is contained in some element of %. For the proof of the existence of such
refinement in paracompact spaces see [3].

8 L.e., the uniformity consisting of all neighbourhoods of the diagonal in X X X.
The equivalence of paracompactness and the existence of such uniformity is proved in

(1].
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Then (X, f) is a covering space of X if and only if and only if

(3) There exist a symmetric open neighbourhood C of the diagonal
in X x X and an open element C of .& such that:

(8a) For every Fe X, f(C[Z]) = C[f&)].

3b) If &7 is the family consisting of all subsets of X x X of
the form Cn FA] for all Ac. &, where F: X xX—>X x X is

defined by F (&, %) = (f(&), f(#)), then 27 is a basis for a uniformity
. in X inducing the given topology of X.

Proof of necessity. Suppose that (X, f) is a covering space of X.
By Lemma 1, we can choose a covering of X satisfying (1) and (2)
and which by the paracompactness of X is an even covering. (See
[2] p. 156). Then clearly we can find a symmetric open neighbourhood
C of the diagonal in X X X such that the covering ¥~ = {C[«] |z € X}
satisfies (1) and (2).

Define C to be the set of all pairs @, ¥) in X x X such that
F@&, #)eC and such that ¥ and ¥ are contained in the same element
W of Z(CIf(®)]). Hence, for each Fec X 6’[9?] is the element of
F(CILf@)]) containing Z.

We shall now show that C is the required neighbourhood of the
diagonal in X x X. For this purpose we prove the following propositions:

@ C=C*=(CoC)nFC]

(b) C is an open neighbourhood of the diagonal in X x X satisfying
(3a).

(¢) The family (%, consisting of sets of the form C N F[A] for
all Ae.o7 and ACC, is a basis for a uniformity .o~ of X.

(d) The uniformity 7 of X defined in (¢) induces the topology
of X.

Proof of (a). Let (%, %) be an element of C. Thus, ¥ and % are
contained in the same element W of # (C[f(®)]). Let V, and V, be
the two elements of & (C [f(@)] containing % and ¥ respectively.
Hence V,N W and V,N W are not empty. By property (2) we must
have V, =V,. Thus, # and ¥ are contained in the same element of
Z (CLf(#)]) which means that (7, Z)e C. Hence C = C-'. For proof
of the second equality note that by Cc F[C], we have
Cc(CoCyn F-[C]. On the other hand, (&, #)e(CoC)n F~C]
implies that f(#)e C[f(&)] and that there exists %, Ze X such that
@&, ) and (%, ¥) are in C. Thus, %, % and % are contained in the same
element W of #(C[f(2)]). Now, if V, and V, are the elements of
Z (C [ Sf(@)]) containing ¥ and J respectively, it follows by (2) that
V.= V.. Hence (& %)eC. It follows that (CoC)n F-[C]< C which
completes the proof of (a).
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Proof of (b). Let (%, %) be any element of €. There exist then
open subsets V and W of X, such that f(®) e V, f(Hle W and such
that Vx WcC. Let U be the element of & (C[f(%)]) containing
Fand . Weput V=0nsf{V]and W=0Un f[W]. It suffices
to show that V x W . But by (a) this last inclusion follows from
the fact that

VxW=(Ux N[V xfHW)]
=Ux OnNFY(VxWyc(C-C)nF-Ccl=C

Thus, C is an open neighbourhood of the diagonal in X x X, and
by the definition of C (3a) holds.

Proof of (¢). Let A be any element of C; then A = Cn FA]
for some 4 of .&7, Ac C. Since .& is a uniformity there exists an
element B of .o, BC C such that BoBc A. Let B=Cn F-[B]. We
have BoBc (CoC)n F-[BoBlc(CoC)n F[A]. Since AcCC, we
have by (a) that

BeBcCnFA]=A4

Thus, for every Ae & there exists Be & such that BoB A, Simple

calculations show that & has all other properties of uniformity and
(c) holds.

Proof of (d). Let S be _any open neighbourhood of an arbltrary
point % of X, and T =8N C[#]. Being an open subset of X, f(T)
contains a set A[f(¥)] for some Ae .7, AcC. Putting A = Cn F[A]
we now show that A[x] cTcS. In fact, let g =f | C [#]. We have
9(A[%)) = F(A[E]) ¢ FAF@]c ALf@] C f(T) = 9(T). Since g is a
homeomorphism, it follows that A[#]c T.

Finally, it is clear that for every Aec & and every Fe X, A[x] is
a neighbourhood of %, thus the uniformity &/ with basis & induces
the topology of X and (d) is proved.

To complete the proof of necessity of condition (8) we only have
to note that the uniformity .7 defined in (¢) satisfies condition (3b).

Proof of sufficiency of condition (38). Let 57 be the given
uniformity of X, C the given neighbourhood of the diagonal of X x X
and C the element of .&7 given in (8).

We have to show the existence of a covering 2~ of X having
property (1). For this purpose we prove the following two properties:

(e) If (& 9)eC, then f(¥) = f(¥) implies & = 7.
and

(f) For every Ae &, AcC, let A=Cn FA]
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Then, for every e X f(A[F]) = ALf(@)].

Proof of (e). Suppose f(&) = f(¥). Hence F(&, %) is in the diagonal
of X X X and therefore, (&, %) e F~[A] for every Ac &7, If (%, %)eC
then (%, %) is contained in every element of a basis for a uniformity
of X, and since X is a Hausdorff space we have & = 7.

Proof of (£f). By (8a) we have F(C)=C. Hence, F(A)c F(C)n A=
CNnA=A. It follows that f(A[#])c F(A)f@&)]cA[f@&)]. On the
other hand, if ye A[f(&)] then yeC[f(®)]. Now by (3a) we have
that f (C[x]) =C[f (ac)], hence there exists %, %€ Clz] N f “1[y] Thus
@ NeCnF A=A and 7eAlZ]. Hence yef(A[#]) and
fFA[Z]) D Al f(&)], which completes the proof of (f).

Now, let B be a symmetric element of Z (defined in 3b) satisfying
BoBc C. Thus, B=Cn F[B] for some BC C, Be. % and we can
assume that B and B are open. By (e) f|B[¥] is one-to-one for each
e X. By (f) f is an open mapping. From (e) it also follows that
{B[#]|% e X} are disjoint. Thus, f|B[#] is a homeomorphism. To
complete the proof we still have to show that

(f") For every symmetric neighbourhood A of .o and for every
xve X, ALf[x]] = f~(A[z]) where A = Cn F-[A].

Proof of (f'). By (f) A[#]c f~'(Alx]) for every & e f~*(x). Hence,
ALf @) < f(Alz)). 5

On the other hand, since A and A are symmetric, we have that
e f(Alx]) implies « € A[f(¥)]. Therefore by (f) there exists &, Fe X
such that f(&) = » and (&, 7)e A. Hence, §c A[Z]c A[f~ I(ac)] and we
thus have f~(A[x]) c A[f*(x)], and (f’) is proved. Since B is sym-
metric we have by (f’) that f~(B[«]) = Uses—1a B[&]. It follows now
that f~Y(B[x]) is a union of a family .7 (Blz]) = {B[#]|% e f(x)}
consisting of pairwise-disjoint open sets, each of which is mapped
homeomorphically onto B[x] by f. Thus, ¥ = {B[x]|x€ X} has
property (1) and Theorem 1 is proved.

REMARK 1. Note that the fact of the uniformity .o of X in
Theorem 1 being maximal has been used, in the proof of Theorem 1,
only for stating that .o contains the neighbourhood C of the diagonal
in X X X defined in (3). Thus, if the maximality of .o~ is replaced
by the statement that the uniformity .9 contains an open element C
such that 7~ = {C[x]|x € X} has properties (1) and (2) the proof of
Theorem 1 is still valid.

REMARK 2. Note that the only reason for X being locally connected
is to ensure the existence of a covering of X having both properties
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(1) and (2); hence the restriction that X is locally connected may be
replaced by the assumption that there exists a covering of X having
properties (1) and (2).

We shall now use Theorem 1 to give a solution to the original
problem concerning locally-connected metric spaces. For this purpose
we require some additional lemmas.

LEMMA 2. Let X be a paracompact space and C a neighbourhood
of X x X. There exists a uniformity C of X which contains C,
has a countable basis and whose members are neighbourhoods of the
diagonal in X x X, ‘

Proof. It is known that in a paracompact space X, for every
neighbourhood A of the diagonal in X x X, there exists a symmetric
neighbourhood of the diagonal B such that BoBC A (see [2] p. 157).
Now let B, = C and, by induction, B, the symmetric neighbourhood
of the diagonal of X x X such that B,oB,C B,_, holds. The family
{B,}n=1,28.-- is a basis for a uniformity C consisting of neigh-
bourhoods of the diagonal, containing C = B, which has a countable
basis and Lemma 2 is proved.

Further, one can easily prove the following

LEMMA 3. Let &7 and <7 be two uniformities in a set X. Then
the family

2 ={D|D=AnB; Ac .57, Be &#'}

18 again o uniformity in X.

LEMMA 4. Let X be a metrisable space, and C any neighbourhood
of the diagonal i X X X. There exists a uniformity < of X,
containing C, having a countable basis and inducing the topology of X.

Proof. Let .o be a uniformity of X containing C, having a
countable basis and consisting of neighbourhoods of the diagonal in
X X X (see lemma 2). Let <% be a uniformity of X having a countable
basis and inducing the topology of X (any metric uniformity has such
properties). By Lemma 3 2 ={D|D=AN B; Ac ./, Be <%} is again
a uniformity of X. Evidently & has a countable basis and contains
C. Finally, since the elements of &7 are neighbourhoods of the diagonal
in X X X, and since each element of <% is one of &, & induces the
given topology of X.

COROLLARY 1. Let X be a metrisable space and C a neighbourhood
of the diagonal in X X X. There exists a melric 0 of X inducing
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the topology of X and such that

Co{(x, v,y <1}.

Proof. By Lemma 4 there exists a uniformity & of X, having
a countable basis, containing C and inducing the topology of X. By
a well known theorem (see [2] p. 186) there exists a metric 0 of X
for which & is the metric uniformity. Thus, there exists ¢ > 0 such
that C > {(x, ¥) | 0(x, ¥) < ¢}. The metric 0 = p/e is the required metric.

By Corollary 1, and since in a paracompact space each covering is
even, we obtain:

COROLLARY 2. Let 7/ be a covering of a metrisable space X.
There exists a metric p of X inducing the topology of X and such
that the set of unit spherical regions in (X, p) refines 7/ .

THEOREM 2. Let (X, f) be a covering space of a metrisable locally
connected space X. There then exist metrics p in X and o in X,
imducing the topologies of X and X respectively and such that the
family &7 of unit sperical regions in (X, 0) has the following property:

(A) for every Se.&”, fU[S] is a unton of a family F(S) con-
sisting of pairwise-disjoint unit spherical regions in (X, ) each of
which 1s mapped isometrically onto S by f.

Proof. By Lemma 1, the proof of Theorem 1 and Corollary 2
there exists a metric p of X inducing the topology of X and such
that the covering 7" of X defined by " = {C[x]|x € X} where C =
{(=, )| o(x, y) < 1}, has properties (1) and (2). We may assume that
o(x,y) =1 for all x and ¥ in X,

Now, let . be the metric uniformity of p. By Theorem 1 and
Remark 1, there exists a uniformity & of X containing a symmetric
open set C such that .o7, C, & and C satisfy (8). Exactly as in the

proof of properties (a) and (e), in Theorem 1 it can be shown that C
has the same properties:

@ C=C"1=(C-C)nFC]
and 5

(e) if (&, ¥)eC, then f(&) = f(¥) implies & = 7.
Now let § be defined on X x X as follows:

< (olf@, f@] if & el
hE D) = 1 otherwise.

It is clear that 0 is syn~1metric and that O(%, ¥) = 0. Moreover,
if 0@ ¥)=0 then (& 9)eC and f@&) = f(#); hence by (e), & = 7.
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Thus, to prove that 0 is a metric it remains to show that

(8) POE, 9 + 0, ) = O, 2).
In the case of (%, ) e C, or if (&, ) or (@, %) are not in C, (g) obviously
holds. If (&, %) and (¥, ) are both in C while (&, Z) is not, by (a) it
follows that (f(%), f(Z)) = F (&, Z) ¢ C and therefore

o0&, ) + 0, 2) = oLf @), fF@)] + ol @), F(B)] = olf @), f(2)]
=1= p(%, Z), and (g) holds.

Hence, 0 is a metric, and one can see that &7 is its metric
uniformity. In fact, let <& be the family of all sets of the form
{(x, )| p(x, y) < 6} for some 0 <6 <1. Since <& is a basis for .7,
it follows by (3b) that

={B|B =Cn FB]; Be &%}

is a basis for .&. Now, for every Be % there exists 6, 0 <o =1
such that 5

(h) B=CnF*@=vlo vy < ={& 1| OE 7 <}

Hence, .o is the metric uniformity of @.

Putting in (h) 6 = 1 it follows that {CI#]|% e X} is the set of
unit sphericalNregions in X and by the definition of C (see Theorem 1)
F (Clz]) = {C[Z] | Z e f(x)}.

To complete the proof of Theorem 2, it remains to show that for
every ¥e X, f |C[x] is an isometry. In fact, if ¥ and zeC‘[x] then
@, 2 eCoC. Now, if (7, Z)e C it follows by the definition of g that
6, 2) = plf@), f®]. If @, 2¢C we have by (a) [f(@), F(@)]eC.
Hence, 0(#, Z) = 1 = o[f(#), f(Z)] and f|C[Z] is an isometry.

REMARK 3. Note that the essential property of the metric o of
X used in the proof of Theorem 2 is that the family of unit spherical
regions in (X, p) satisfies (1) and (2). Thus, if (X, f) is a covering
space of a metric space (X, p) such that the family .&” of unit spherical
regions of (X, p) has properties (1) and (2) it follows that there exists
a metric @ of X such that .o satisfies (A).

Note also that if (X, f) is a cevering space of a compact locally-
connected metric space (X, p*) then, by Lebesque’s covering lemma
(see [2] p. 154), the metric 0 of X can be obtained by multiplying o*
by a constant.

Part 2. Covering spaces of metrisable spaces which are not
locally connected. In this part, the original problem for not neces-
sarily locally connected spaces is considered and the following result
is obtained:
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TuEoREM 3. Let (X, f) be a covering space of a metrisable space
X. There then exist metrics p of X and 0 of X inducing the
topologies of X and X respectively, such that the family &7 of unit
spherical regions in (X, p) has the following property:

(A) for every Se.&7, fYS] is a union of a family & (S) con-
sisting of pairwise-disjoint open sets in (X, p) each of which is
mapped isometrically onto S.

The proof of Theorem 3 will be given later, after some remarks
and Example 2 which, as we hope, explains the need for this theorem.

Comparing Theorem 3 with Theorem 2, we see that in this case
it is not claimed that the elements of .#(S), are spherical regions.
Indeed, in Example 2 a covering space (X, f) of a metrisable non-locally
connected space X is constructed in such a way that there do not
exist metrics 7 of X and p of X for which the family of unit spherical
regions .&” has property (A). For this purpose note that property (2)
is not only a sufficient but a necessary condition for the validity of
Theorem 2 (see Remark 2). In fact, if there exist metrics g of X
and o of X for which the family of unit spheres in (X, o) has property
(A) then the family of spherical regions of radius 1/2 in (X, 0) has
property (2).

Thus, it suffices to construct a covering space (X, f) of a metrisable
space X such that no covering of X has property (2). Such a covering
space is constructed in the following

ExAMPLE 2. Let {g,} be the sequence defined by
9o = l;yl=2;gn=2kli(2’° —2) fornz=2.
For each nonnegative integer # and for m = 0,1, --- g, — 1 let I(m, n)
be the segment in E* defined by
I(m,n) = {9 |2m =x =2m + 1,y =n}.
Now let C denote the Cantor set in [0,1]. We put
X={@x9|2eC,0=y=1}UI0,0UI(0,1).

To define X note that for each integer », C is contained in a union of
2" disjoint segments of length (1/3)". We denote these segments by
D(n,k),k=0,1---2"—1 and it is clear that C(n, k) = C N D(n, k)
is homeomorphic with C and that

Cin,k)y=Cn +1,2k)UC(n + 1,2k + 1) .

Now for each £cC and each two pairs (m,, n,) and (m,, n,), where
Ny # Ny 0= m; < gy, let S(my, ny;my, n,; E) be the segment in E?



1498 A. ZABRODSKY

having a; = 2m; + & n;) ¢ = 1, 2 as end points. Finally, we put
P(my, ny; my, 1y m, k) = U {S(mb N1y My, Ng; E) Ié € C(n, k)}

and call such a set a path of width (1/3)" connecting I(m,, n,) and
I(my, ny). We shall call the points (2m,; + &, n,), E€ C(n, k), 1 =1, 2,
the end points of the path. Now let

X, = I(0, 0)
X, =1(0,0) U I(0,1) U I, 1) U P(0, 0;0,1;1,0) U P(0,0;1,1;1,1) .

Suppose we have defined X,, ¢ =1, having the following properties
(obviously lloldirlg for ¢ = 1):

(i) X>X%.,

(i) X,oU{Im,n)|0=m<g,0=n=gq}

(iii) for each n,0<n <g¢q, 0 < m < ¢,, X, contains one and only
one path of width (1/3)" having end points in I(m,n). This path
connects I(m, n) and a segment I(m, n — 1) for some 0 < m, < ¢,_,.

(vi) for each 0 < n <gq, every point & = (2m + & n),0 = m<g,,
£eC, is an end point of one and only one path in X,. This path is
either the path of width (1/3)" indicated in (iii) connecting I(m, n)
with I(m,, » — 1) for some 0= m, < g, or of width (1/3)"** con-
necting I(m,, ») and I(m,, n + 1) for some 0 = m, < ¢,4,. Different
paths connect I(m,n) with different segments.

(v) All the paths contained in X, are disjoint.

Thus, it follows that for each m, 0 < m < g,, I(m, q) contains end
points of one and only one path in X,, this path is of width (1/3)%.
Hence, for each m, 0 =m < g, there exist 2* — 2 integers 0 =
k0, m) < kA, m) < -+« k@27 — 3, m) < 27 such that if £eC(q +
1, k(r,m)), 0 = r <2 — 2 then (2m + §, q) is not an end point of a
path contained in X'q. We put

X =U{Pm, ¢; @™ — 2)m + r,q + 1;q + 1, k(r, m)) | 0
=r<2™—-20=m<g}
and let

XII+1 = Xq U Xq'+1 UlUI(m, ¢ +1)]0=m < ggi}] .

It can be seen that cond1t10ns (i) to (v) hold. Finally, let X = U, X,.
Then X satisfies

(iy XoUlm,n)|0<m<g,n=012-.-}

(i)’ For each 0 < n and 0 =m < g,, X contains one and only
one path of width (1/3)" which has end points in I(m, n). This path
connects I(m, n) with a segment I(m,, » — 1) for some 0 < m, < ¢,—;.

(iiiy Every point a =(2m + &, n),0=<m < g,,£cC, is an end
point of one and only one path [in X. This path is either the path
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of width (1/3)" mentioned in (ii)’ connecting I(m, n) with a segment

I(m;, n —1) for some 0 =m < g,, or a segment of width (1/3)"*

which connects I(m, n) with some segment I(m,, n + 1) for some 0 <

My, < gn.41. Different paths connects I(m, n) with different segments.
(vY All the paths in X are disjoint.

Figure 1 illustrates the set X,.

In order to define f, f: X — X, we first define it on U {I(m, n)|0 <
m<g,n=012 .-}, We put f@Cm + & »n) = (& 1 + (—1)*)/2) for
0<&=1. Now we extend f linearly onto all of X, i.e: if a and B
are end points of a segment in a path contained in X, we put f(ta +
A —tB) =tf(@) + 1 —t)f(B), 0=t <1. This mapping is continuous
and maps X onto X. Moreover, if we put

V0=Xn{(m,y)ly<—i—}

vi=xo{@niv>+

then %, = {V,, V.} satisfies (1). Indeed,

vy =200 {@wize -2 <y<an+ ]

=0

and each component of f~*(V,) contains one segment I(m, 2k) and the
intersections of all paths in X which have end points in I(m, 2k) with
the set {(x, ) |2k — (3/4) < y < 2k + (3/4)}, and this set is homeomor-
phic under f with V,. Similar arguments hold for V.. Moreover, it
can be shown that a covering &~ of X satisfies (1) if and only if no
element of 97° intersects both I(0, 0) and I(0, 1).

We shall show now that no covering 2~ of X for which (1) holds
satisfies (2). Indeed, let & be a covering of X for which (1) holds.
Without loss of generality we may assume that 2" consists of inter-
sections of open disks in E* with X. Let m, be such that (1/3)" is
less than the Lebesque number of 27°. Consider any segment I(m,, n,),
0=m,<g,, and Nlet &, and &, be the two end points of D(n,, k(m,, 0)),
then the paths in X of which &, = (2m, + &, n,) and &, = (2m, + &,, ny)
are end points connect I(m,, n,) with two different segments-I(m,, n,+ 1)
and I(m, n, + 1). For each 0 <7 =1 the points (&, ) and (&, 7)),
are both contained in some element of . Let V, be an element of
7~ containing a; = (£, 0) and a, = (£,, 0) and V,€ 7" containing B, =
(¢,1) and B, = (&, 1). Assuming that n, is even we have that &, =
2m, + &, n,) and &, = (2m, + &, n,) as points of X lie in the same
element V, of .#(V,). Indeed, since V, is connected the elements of
Z (V,) are connected, and since V, contains no points of I1(0,1), the
element V, of #(V,) which contains &, does not contain points of
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segments I(m,n) other than I(m, m,). Thus, the point of f~'(a)
which V, contains must be &,. By the same arguments B, = (2m, +
£, m, + 1) and B, = (2m, + &, n, + 1) lie in different elements V* and
V® of & (v). Therefore, there must exist two elements V and
U of 2", containing the points (&, %) and (&, %) for some 0 <7 =1,
and two elements of .# (U) intersect some element of #(V), (see
Figure 2) and (2) does not hold.

Before proving Theorem 8 let us introduce the following notions:
Let X be a topological space and 97" a convering of X. We say that
a finite subset F of X, F = {x,, ®,, %, -+~ &,} is a chain in %" if, for
every ¢, ©=20,1,2.--n —1, 2, and x;;, are both contained in some

100, 2) I, 2) . . 12, 2) 13,2y

PO,1;0,2:2,2)|| PO11,229 P@,1;2,2:20 P(1,1;3,2;2,1)

I, )T I(,1) ==

[ —

N =

0 {PO0:0,1:L0) _~Z22"p(g,0;1,151,1)

[ ZZ=

: ! =

[ 2z
100, 0) L

Fig. 1
" //

o7\ . /D
10 I(7nzyn0+1)

™
°<:z

I(mg, 1) 4

Fig. 2
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element W of 9#°. The 97 -component of = in X is the set of all
points ¥ of X contained, together with 2, in some chainin %", It is
clear that the %7 -components are disjoint open subsets of X.

Proof of theorem 3. Let 97°* be a covering of X having property
(1), and % a locally finite covering of X consisting of open sets
whose closures refine 9%77*. Furthermore, let W be any element of
%" and W* an elements of <7 * such that W< W*. We put

FW)={W|W=W*nf(W);,Wre 7 (W)}.

It follows that 97~ also satisfies (1), and since 9% is locally-finite
and for every We %, # (W) is discrete—the covering w =
Urep Z (W) is locally finite.

Given any metric o in X, we shall show that o can be “lifted”
into X, i.e: there exists a metric 0 of X such that for every We %
and every We . (W), f|W is an isometry between W and W.

We now define 0 as follows:

If # and 7 are elements of X belonging to different %-components,
we put 0%, ¥) = 1. If ¥ and. ¥ are in the same component, we put

5@, 1) = inf 5, 017 @), f @]

where the infinum is taken over all chains {# = %, %, ---, %, = %} in
o/~ connecting # and 7. It is clear that @ is pseudometric and that
O&, ¥) = ol f @), f(#)]. We shall now show that @ has the following
properties:

(k) For every #e X there exists an open neighbourhood 7'(%)
such that e T(®) c W for every W of 9% which contains #.

(k,) There exists a positive real number J(%) such that

S, 6@)) = {710, %) < é@}c T@) .

Proof of (k). Since <% is locally finite, each # in X is contained
in an open set M (%) intersecting only a finite number of elements of
2
Let T(%) be the intersection over the family A (%) which consists
of M (&), of the elements of v which contain ¥ and of the comple-
ments of the closures of elements of % which do not contain % in
their closure. Then 7'(%) is an open neighbourhood of # satisfying
(k,). By the definition of T'(%) it follows that.

(1) if We % then Wn T(%) = ¢ implies e W.

Proof of k,. Let 6(X), 6(X) <1 be a positive number such that
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S[f®), 0@)] = {ylye X; olf @), y] < 6@} F(T®). We shall show
that (k,) holds. 5

In fact, let ¥ be any point such that ¢ T®). If ¥ does not
belong to the <% -component of % then P&, J) =1 > 6(%) and thus,
¥ ¢ S@, 6(%)). Therefore we may assume that ¥ belongs to the
Ww-component of . Then for every &> 0 there exists a chain
(B =%, & +++ %, =7} in % such that

n—1

PE,9) + ez 3 oLf @), fF@)] -

Let 4, be the first subscript such that #; ., ¢ T(&). We shall show
that f(%; ;)¢ f (T(®%)). Suppose to the contrary that f (xzoﬂ)e F(T@)).
There then exists an element Z of 7'(%) (and therefore %z = %, and
such that f(Z) = f (x,oH) By definition of a chain it follows that there
exists a W, W e W such that Z; and a?ioﬂe_W. Since ;€ T(%),
W n T(%) is not empty and therefore by (1) #e W. On the other hand,
if W, is the element of & [f(W)] containing #, we have by Ze T(%)
and by (l) that e W,., Hence, W,N W # ¢ which contradicts the
fact that . (f(W)) is discrete. Thus, f& ) ef (T (%)) and therefore
o(f (@), f(&:+1)) = 6(F). Thus we have:

D + ez S oL@, f@ 2 3 0LFE), FE)]
2 017 @), f@,)] Z 0@ .

Hence, for every ¢ > 0 we have O(%, %) = (&) — ¢, and thus 0(%, %) =
8(®). It follows that S[&, (%) < T(%) and (k,) is proved.

Suppose now that A(&, %) = 0. Then by O, %) = o(f (@), f(B)),
we have P[f(®),f(7)] =0, hence f(Z)=f(%) and by (k) Fe T(®@).
Since by (k) f|T(&) is' a homeomorphism, it follows that # = % and
therefore 0 is a metric. Moreover, by the definition of 0 we have
that for each We 97, f| W is an an lsometry Therefore by (k,) we

have that for each 7 < 8(&), Te We -z

S@, 1) = W n FS( @), 9]

which implies that 0 induces the topology of X.

Now if we take the metric p of X to be a metric having the
property that the set .&° of unit spherical region in (X, p) refines %%
(see corollary 2) (A,) holds and the proof of Theorem 3 is completed.
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