Vol. 15, No. 1, 1965

Download this article
Download this article For screen
For printing
Recent Issues
Vol. 290: 1  2
Vol. 289: 1  2
Vol. 288: 1  2
Vol. 287: 1  2
Vol. 286: 1  2
Vol. 285: 1  2
Vol. 284: 1  2
Vol. 283: 1  2
Online Archive
Volume:
Issue:
     
The Journal
Editorial Board
Officers
Special Issues
Submission Guidelines
Submission Form
Subscriptions
Contacts
Author Index
To Appear
 
ISSN: 0030-8730
Approximation by convolutions

Robert E. Edwards

Vol. 15 (1965), No. 1, 85–95
Abstract

This paper is concerned mainly with approximating functions on closed subsets P of a locally compact Abelian group G by absolute-convex combinations of convolutions f g, with f and g extracted from bounded subsets of conjugate Lebesgue spaces Lp(G) and Lp(G). It is shown that the Helson subsets of G can be characterised in terms of this approximation problem, and that the solubility of this problem for P is closely related to questions concerning certain multipliers of Lp(G). The final theorem shows in particular that the P. J. Cohen factorisation theorem for L1(G) fails badly for Lp(G) whenever G is infinite compact Abelian and p > 1.

Mathematical Subject Classification
Primary: 42.55
Milestones
Received: 5 February 1964
Published: 1 March 1965
Authors
Robert E. Edwards