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where {d,} is a moment sequence, 4'd, =d,,n=10,1,2, ---
4 d, — 4" *d,.,, for n=0,1,2, -

J. P. BRANNEN

If {a,} is a moment sequence and (da) is the difference
matrix having base sequence {a,}, then (da) is symmetric about
the main diagenal if and only if the function a(x) such that

1
Uy, = g arda(x),n =0,1,2, ---, is symmetric in the sense that

0
a(x) + ad + ) = a(1) + «(0) except for at most countably many

2 in [0, 1],

This property is related to the ‘‘fixed points’ of

the matrix H, where HaH is the Hausdorff matrix determined
by the moment sequence {a.}.

(4d) =

4d,
4,
£d,

A'd,
4'd,
Ld,

and m=1,2,3, ---.

In each of the papers [2], [3] and [5], there is reference to dif-
ference matrices of the form

and 4™d, =
In [2],

Garabedian and Wall discussed the importance of (4d) having the
property of being symmetric about the main diagonal, i.e. 4™d, = 4"d,,..
They also showed that if {d,} is a totally monotone sequence, then
(4d) is symmetric about the main diagonal if and only if the function
f(x) which generates {d,} has a certain type continued fraction expansion.

In this paper, the symmetry of (4d) is investigated with the re-

striction of total monotonicity removed and a collection of necessary
and sufficient conditions are given, Theorem 3, for moment sequences.

in general.

(1)

A relation is established between the symmetry of (4d)
and the “fixed points” of the difference matrix

-
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2. Notation, definitions, and examples. Except for some notation
and definitions introduced for convenience, the notation and definitions
of this paper will follow [6].

NotaTioN. If {d,} is an infinite sequence, d* and d’' denote re-
spectively the diagonal and column matrices determined by {d,}.

DerinITION 1. If {d,} is a number sequence such that for some
function f(x) on [0, 1],

1 1
d, = | wdf(e) = | (1 - opdf(o) ; p=101,2 -,
0 0
then {d,} is called a symmetric moment sequence.
The Cesaro moment sequence 1, %, %, -+ provides an example of a
moment sequence satisfying Definition 1 since for p =0,1,2, ---

(2) 6 = | wrdo = opp + 1]
JOo 0
1
p+1°

= |0 —ayde = —1 = proyp+ 1] =

DEeFINITION 2. If A is a semi-infinite, lower triangular, matrix
having inverse and {a,} and {d,} are sequences such that A~'d*Aa’ =
A7'a*Ad’, then {a,} and {d,} are symmetric relative to A.

The Cesdro moment sequence 1, %, %, ---, ¢, of (2), and the sequence
1,4, % %, «+- are symmetric relative to the matrix H of (1).

3. THEOREMS. LEMMA. Suppose {s,} s a sequence such that
s, =0 for p=20,1,2, --- and suppose that A is a semi-infinite matrixz
having inverse such that As' = §'; then,

(i) A% =¢,

(i) {=,} and {s,} are symmetric with respect to A if and only
of Ax' = o, and

(iil) <f A7'a*As’ = A7's*Aa’ and AT0*As' = A7's*AY, then
A7D*Ad’ = A7'a*AY .

Proof. (i) is obvious. For the proof of (ii), we first suppose {z,}
is symmetric with {s,} relative to A so that A-x2*A4As’ = A~'s*Ax’.
Multiplying both sides on the left by A and using As’ = s’ gives
x*s’ = s*A«x’. Under the hypothesis, s* has inverse s*™' so that

(3) s*lp*s = g*ls* Ax’ = Ax’ .

Since xz*s’ = s*a’, it follows from (3) that »' = Ax'.
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On the other hand, if A2 = &/,
(4) A7'e*As' = A7'x*s
and
A8 Ax' = A7's*

Since s*x’ = a*s’, it follows from (4) that x and s are symmetric
relative to A.

For the proof of (iii), we suppose that ¢’ = s*'a*s’ and b’ = s*~b*s’,
from which it follows that

(5) A la*AY = A 'q*s*b*s
and
(6) A7B*Ae = A7b*s* ta*s’ .

Since diagonal matrices permute, it follows that (5) and (6) are equal
establishing (iii).

THEOREM 1. If {b,} is a moment sequence, t.e.,
1
(M) b, = | adg(a)
0

{b,} and the Cesdro sequence (2) are symmetric relative to H if and
only if {b,} 1s a symmetric moment sequence.

Proof. Let

5 (”)(—1)%@ for m—2,4,6, -
p=0 \D
Ay =17
5 (Z)(—l)w 92 form=1,35, -

p=0

Clearly, if {t,} is any number sequence, Ht' = ¢’ if and only if

s (Z’)(—l)"tp — 0 for n=2,4,6, -
p=0

and
n—1

n » — o o voe
2(p)( o, — 2, =0 form=1,35, - .

=0

Thus if {b,} is defined as in (7), HV' = b’ if and only if

(8) Slfn(x)dg(m) —0 formn=1,23 -
0

But, f(x) =1 — )" — 2" for n =1,2,8, --+ so that
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1 1 1

(9) | A@dg@) = | (@~ ordg@) — [odg(a) ,
and consequently (8) holds if and only if {b,} is a symmetric moment
sequence. It follows from (9) and (2) that H¢ = ¢’ and from the
preceding Lemma that {b,} and {¢,} are symmetric relative to H.

Conversely, if {b,} and {c,} are symmetric relative to H, it follows
that Hb = b’, and if {b,} is defined as in (7), then {b,} is a symmetric
moment sequence.

THrOREM 2. If g(x) is of bounded wariation on [0,1] and {z,}
18 the moment sequence determined by g(x), the following two state-
ments are equivalent:
(i) {2} is a symmetric moment sequence, and
(ii) there do mot exist uncountably many x in [0, 1] for which
g(x) + g(1 — ) = g(1) + g(0).

Proof. Suppose (i). Then let v =1 — x so that,
2= 0~ ordge) = [ wagt - o) = ~[wrdgt —w .
0 0 0

Thus, 51(1 — 2)ydg(x) = —Slx“’dg(l — &) so that for p=10,1,2, «--,
0 0

(10) S:x”d[g(x) fgl—am)]=0.

Since g(z) — g(1 — ) is of bounded Variation on [0,1], (10) implies
that for every k(x) continuous on [0, 1], S E(x)d[g(x) + g1 — x)] = 0.
This, [4, p. 69], implies (ii). Reversing the? steps leading to (10) shows.
that (ii) implies (i).

An interesting example of a function satisfying (ii) is provided
by Evans in [1].

THEOREM 3. Suppose g(x) ts of bounded variation on [0,1] and
suppose {a,} s the mement sequence generated by g(x). The following
statements are equivalent:

(i) {a,} is @ symmetric moment sequence,

(ii) Hd =d,

(iii) {a,} and the Cesdro moment sequence {c,} are symmetric
relative to H, and

(iv) the difference matrix (da) having base sequence {a,} is sym-
metric about the main diagonal.

Proof. Theorem 1 implies the equivalence of (i), (ii), and (iii).
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(1) implies (iv) provided

1) [ a1 — aydge) = Slx”(l ~ wymdg(w)  for mym=0,1,2 -
L0 0

1

Let w = 1 — « so that S ™1 — x)*dg(x) = go(l — w)"u"dg(l —u). Thus
0 1

(11) may be rewritten as

(12) —g:(l — yrardg(l — z) = S:x”(l — @) dg(x)
= [ = odlgla) + o1 — 0] = 0.

That (12) is the case for {a,} a symmetric moment sequence follows
from (ii) of Theorem 2. (iv) implies (ii) since (iv) implies that a, =
4" A4,, which is the same as saying that Ha' = a’. Thus the equivalence
of the four statements is established.

I am grateful to Professor H. S. Wall for some comments which
have been of considerable value in the preparation of this paper.
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