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SOME INEQUALITIES FOR SYMMETRIC MEANS

P. S. BULLEN

This paper was received before the synoptic introduction
became a requirement,

1. In two recent papers, [3, 4], Everitt has generalised certain
known inequalities, by replacing the known monotonicity of certain
set (or sequence) functions by super-additivity; the sequence functions
are zero if all the terms of the sequence are equal.

Included in the inequalities generalised is one due to Rado, [5,
p. 61]. Bullen and Marcus, [1], recently proved a multiplicative ana-
logue of this inequality and a generalisation to symmetric means. It
is one of the intentions of this note to show that the corresponding
sequence function, which is 1 when all the terms of the sequence are
equal is logarithmically super-additive, (Corollary 5, below). Further
properties of these sequence functions are then investigated.

2. (a)=(a, -+-, a,) will denote an m-tple of positive numbers.
E(a), 1 £ r < m, is the rth elementary symmetric function of (a),

(1) E =E(@=Xa, BE=1,

the sum being over all »-tples, ¢, +-+,%,, such that 1 =<4, < -+ <1, < m.
P,(a) is the mean of E (a),

(2) P, =P =) B, .

Ifm=n+gq @=(@a,--,a,), (@ = (@, ***, ¢+, and correspond-
ingly E. = E. @), E.= E.&), etc., if » has suitable values. When
4 = 1 the symmetric means are arithmetic means and will be written
P, =A4,,, P=A4, P =2A4, Sinilarly, P,., Pn,NPq are powers of

geometric means and will be written G+, G2 and GY respectively.

3. It is known, [5, p.52] that
(3) s <t implies P! = P¢, with equality if and only if ¢, = +-+- = a,,.

It is easily seen from (1) that

(i) if s < min(n, q) then E,= S E, K,
t=0

(i) if s > max (n,q) then E, = S, B, J .1,

t=

0
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(i) if ¢<s=n then E, = S, B,
t=0

Using these identities and (2) we have

LemMA 1. (i) If1=s=n-+g¢q

(4) P, = > \"P_P,,
t=u
where v =max (s —n,0), v =min(s,q), M =A" =1 and ¢t / 0, s,

R LO) O] VA G

(i) In particular if a,,, = +++ = a,., = B then

(5) P, = S\\"P_ 8,

and tf in addition a, = --+ = a, = «,

(6) P, = S Mgt
t=u

When ¢ =1 this reduces to formulae (2) and (4) of [1].
4. We are now in a position to state and prove

THEOREM 2. Let 1=r=k=mn+q and uw = max (r — n,0), v=
min (r, q), w = max (k — n,0), x = min(k, ¢). Then
Q) Wfrv=wand r—u=sk—u

PTk/T - P;E;x)/(r—u) va/u

7 = = )
( ) Pr o Pk——x Pw
) of v=w
Pk/'r ~w/v
8 —_= =,
(8) 2 23
with equality in each case 1f and only if either r=kor a,= -+ =a,.,

Before proceeding with the proof it should be noted that the con-
dition v =< w becomes r — w =< k — 2 if n and ¢ are interchanged. So
if * —u = k — « inequality (8) holds, with the role of » and ¢ inter-
changed; or equivalently P}"/P, = P%;=/—»/P, .. If neither v < w
nor r — % = k — « then, from (3), nothing is true. The condition
v =< w is equivalent to min (7, ¢) < max (k — 7, 0) and for this either
r<qandk=mn-+7rorr=qand k=n+ ¢; that is k = n + v. For
both v=w and r —n =k — x either r <min(n,q) and k= r +
max (n, ¢) or » = min(n,q) and k = n + q.

Proof of Theorem 2. If r = k the results are trivial so assume
r < k. Rewrite (7) as
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__ P P
- P}:_qu: = PT[(_ku—w)/(r—u)]rﬁ;ﬂr/u

By (4) with s =17

A

L =R.

v — ~ \Fk
(9) Pf:(E)\,E’) r—tPt> .
t=u
Using (8) on each term of this sum
v = ~ k
P = (3 nr Bt Pie)

By (6) the right hand side of this inequality is the kth power of the
rth symmetric mean of b, -+, b,,, where b, = -++ = b, = P¥"% and
byir= +++ =b,,, = P}, Using (3), (6) and » < k this gives

@x —_ ~ r
P"{c g <Z Xék)P;E;t)/(r—u)Ptlu)
t=w
—_ ~ x — ~ r
— Pq!:iku—:c)/(r—u)]rpwr/v<z kgk)PT(f;t)/(r-—u)P;t—-w}/u) .
t=w
On rewriting we get,
2 i ~ r
Rz (PP ) = 8, say
=w
Similarly by (4)

(10) Pr= ( S x;k>PkHtﬁt>r )

t=w

Using (3) on each term of this sum gives

x —_— ~ r
P; < (3 MpPz e Py
=w

—_ 2 = o~ "
= PPy S Pizoie— pymore)

t=w

Rewriting we have that

L= (SunPitisoPyon) = T, say.
t=w

By the condition in (i) and (3), T'< S, which proves (7). Some terms
in the above proof become undefined in certain limiting cases. If they
are defined to be 1 the proof is then correet. Finally, since r <k,
the inequality is clearly strict when (3) is. This completes the proof
of (i).

To prove (ii) the procedure is similar except that when (3) is
applied to the right hand sides of (9) and (10) it is applied to the
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second part of each term only, that is to P, The analysis is then
the same with (5) being used instead of (6).

COROLLARY 3.

~

A nte AN A\
: ()= (22
( ) Gn—HI > Gn Gq
with equality if and only tf a, = +++ = @,y

Proof. From Theorem 2(i) with »r =1, k=n + q.

COROLLARY 4. Ifl=r=<s=n then

s+1 Ds
(12) Lo o B
P, - P

and in particular

a3 (&) =(5)"

n

%

with equality ©f and only &1f a, = <<+ = @y,

Proof. From Theorem 2 (ii) with k¥ =s + 1, n = 1. These results
are those in [1].

Finally if r{(e)} = r(a) = (4,./G,)™ then we have
COROLLARY 5. log r{(@) U (@)} = log r(@) + log r(@).

5. The above inequalities (11), (13) and that due to Rado, [5,
p. 61] can be further generalised by the use of weighted means. Let

(w) = (w,, *++, w,) be an m-tple of nonnegative numbers, not all zero.
Define

W,=w,, W.>0,
i=1

yw,

1 ¢ g
— Aw) — a. = G —= Wi

It is known that

14) G, < A,, with equality only when a,= --+- =gq, .

A generalisation of Rado’s inequality and (13) is given by
THEOREM 6.

‘(15) Wn(An - G’r) = Wn+1(An+1 - G'n+1) ’
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with equality 1f and only if @, = +++ = a,.,.

Proof. The proofs are exactly those of the special cases. As
direct proofs were not given in [1] they will be given here. In particu-
lar the proof of (15) is simpler than that suggested in [5].

(15) is equivalent to G, = (W, /W,.)G, + W,/ W, 1)@, = U, say.

. Wy
() Gy = GRrITasvalf /e

<=U

by an application of (14).
Similarly (16) is equivalent to

Wano
Ay Z AZWeGIE I = Y, say

but
8) A= A+ 0
=V,

by an application of (14).
In a similar way we can prove

THEOREM 7.

W'/H'p(AfrH'q - Gn+q) g Wn<gn - Gn

with equality t1f and only if a,= -+ = a,.,.

+
§z
=
|
5)1

Generalisations along the same lines are possible for the inequalities
(7), (8) and (12). Suppose (wa) = (w.a,, + -+, w,a,); then define

F(a) = L (wa) ,
E(w)
a generalisation of P.(a), to which it reduces if w,= +-- =w, # 0.
The two m-tples (@), (w) will be said to be similarly ordered if for all
i J, @ = a; (a; = a;) implies w; = w; (w; = w,).

THEOREM 8. If (¢) and (w) are similarly ordered then

(i) s<timplies F¢ > F¢, with equality iof and only if a,=---=a,,.

(i1) tmequalities (7), (8) and (12) hold, subject to the relevant
.conditions, with P replaced by F.
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Proof. The proof of (i) is exactly that of (3), [5, p.53]. Then
the inequalities follow as before.

The requirement that (a) and (w) be similarly ordered is essential
as the following example shows. If (@) =(1,1,2) and (w) = (2,1,1)
then F| < Fj* but F}? > F}{®. The extreme case s=1, t = m of (i)
is a weaker form of (14) since FY™ is the unweighted geometric mean
whereas F), is the weighted arithmetic mean with the larger numbers
having the larger weights.

6. In recent papers Diananda, [2] and Kober [6], have investigated
further properties of A, — G,. We will now prove multiplicative
analogues of their results. Let (w)= (w, ---,w,), w, >0, W,=1
and define

G G,
L _ ﬁ (a};/za;-l/z + a;.—l/za?lz >
=" 2 ’
"= 2 ’

w = min (w,, ++-,w,), W=max (w,, +-+, w,).

THEOREM 9.
19 Ly~ < R,< EY,
(20) AV < R
with equality if and only if a, = -+ = a,.
Proof. The proofs of (19) and (20) are similar so only that of (20)

will be given. Writing a = 1/(1 — w) the left hand inequality in (20)
can be rewritten as

(21) Gl = A,

where

i, = J1 (L™,
i5=1 2

The left hand side of (21) is equal to

S
[l (ai + aj> owiw 5 ﬁ a(“w%”]'(l'—“)wi} .
1si<jsn 2 i=1

Since aw?+ (1 — a)w; =0 and Djiqic;za 20w,w; + 37— {awi + (1 — ayw; =
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1, an application of (14) gives (21).

The proof of the right hand inequality in (20) is slightly longer.
The proof is by induction on 7 and the result is trivial when n = 1.
By rewriting, the inequality is equivalent to

_ AG
(22) Bala) = T = 1.

n

Using (17) and (18) it is easy to show that

(@ = AL = WA b w0 G gt
(@) =

n—1 2w W,
Hn_1’H<ai + an)
=1 2

In particular therefore, if ¢, = -+ =¢a,; = «,

. {(1 — wn)a + wnan}"’a‘l‘wn)(’”n“wa;fn“—’”n“w’
»(23) Bn(a) - (an + o )an(h—wn)
2
Further if v = min (w,, +++, w,_;) then v = w and
Av _ Gl—v
Bn— (ar Tty a/n—l) - #—.L—\:zl_
1\ H}filf““'

Now, since 1 —w, —w=0and w+ 1—w,)1—w)+w,l—w,—w) =
2w,(1 — w,), an application of (14) to (23) demonstrates (22) in this
special case.

If we now assume B, ; = 1 then

o = Ba ML= WAy + 0,0, GUT I g O
n = — 2 .
' Araze? T <“i + a, )2”’“”"
e
i=1 2
Y W e e
= n[—_f <C(/i + a/n >2wiw”
i=1 2

using (14). Without any loss of generality we can assume that a, =
max (a,, **-, @,), when in particular a, = A,_,. Then

(@ = AL = WAy + w,a,}P Al gt
n

= <C(/" + Anr—l )an(l—wn)
2

IA

1,

by the particular case (23) with ¢ = A4,,_,.
The cases of equality are immediate.
It might be remarked that if W’ is second largest and w' the
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second smallest of (w) tnen
1<L»w <4, <L,

It is possible to generalise Holder’s inequality using Theorem 9.

THEOREM 10. Let a; =0 (t=1,+++,m, =1, ---,n) and

Say=5>0  (G=1-,m).
Then
Dﬁs}”j iiﬁa},};iédﬂ sYi
= v=la=l =1

where

D = min (1, L, 4)

d = max (I, \)
and

L = maX L; (w/n~1)(ai1’ cee, am) — m.aX L;(iw/n~1>
* %

= max A;“/l‘w(aﬂ N am) = max AZ?”‘M
g K

b
I =min L7,
T

A = min A" .
i

Proof. A simple modification of the usual proof [5, p.23] using
Theorem 9 instead of (14).
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